459 research outputs found

    Dynamic Scaling in the Susceptibility of the Spin-1\2 Kagome Lattice Antiferromagnet Herbertsmithite

    Full text link
    The spin-1/2 kagome lattice antiferromagnet herbertsmithite, ZnCu3_{3}(OH)6_{6}Cl2_{2}, is a candidate material for a quantum spin liquid ground state. We show that the magnetic response of this material displays an unusual scaling relation in both the bulk ac susceptibility and the low energy dynamic susceptibility as measured by inelastic neutron scattering. The quantity χTα\chi T^\alpha with α0.66\alpha \simeq 0.66 can be expressed as a universal function of H/TH/T or ω/T\omega/T. This scaling is discussed in relation to similar behavior seen in systems influenced by disorder or by the proximity to a quantum critical point.Comment: 5 pages, 3 figures v2: updated to match published version

    The effective string spectrum in the orthogonal gauge

    Full text link
    The low-energy effective action on long string-like objects in quantum field theory, such as confining strings, includes the Nambu-Goto action and then higher-derivative corrections. This action is diffeomorphism-invariant, and can be analyzed in various gauges. Polchinski and Strominger suggested a specific way to analyze this effective action in the orthogonal gauge, in which the induced metric on the worldsheet is conformally equivalent to a flat metric. Their suggestion leads to a specific term at the next order beyond the Nambu-Goto action. We compute the leading correction to the Nambu-Goto spectrum using the action that includes this term, and we show that it agrees with the leading correction previously computed in the static gauge. This gives a consistency check for the framework of Polchinski and Strominger, and helps to understand its relation to the theory in the static gauge.Comment: 21 page

    Antiferromagnetism of SrFe2As2 studied by Single-Crystal 75As-NMR

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra clearly show sharp first-order antiferromagnetic (AF) and structural transitions occurring simultaneously. The behavior in the vicinity of the transition is compared with our previous study on BaFe2As2. No significant difference was observed in the temperature dependence of the static quantities such as the AF splitting and electric quadrupole splitting. However, the results of the NMR relaxation rate revealed difference in the dynamical spin fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear to be more anisotropic in BaFe2As2 than in SrFe2As2.Comment: 4 pages, 5 figures; discussion revised; accepted for publication in J. Phys. Soc. Jp

    Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2

    Full text link
    The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)2As2 has been investigated by inelastic neutron scattering over the full range from undoped to the overdoped regime. We observe damped magnetic fluctuations in the normal state of the optimally doped compound (x=0.06) that share a remarkable similarity with those in the paramagnetic state of the parent compound (x=0). In the overdoped superconducting compound (x=0.14), magnetic excitations show a gap-like behavior, possibly related to a topological change in the hole Fermi surface (Lifshitz transition), while the imaginary part of the spin susceptibility prominently resembles that of the overdoped cuprates. For the heavily overdoped, non-superconducting compound (x=0.24) the magnetic scattering disappears, which could be attributed to the absence of a hole Fermi-surface pocket observed by photoemission.Comment: 6 pages, 5 figures, published versio
    corecore