9 research outputs found
Quarkonium dissociation by anisotropy
We compute the screening length for quarkonium mesons moving through an
anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its
gravity dual. We present the results for arbitrary velocities and orientations
of the mesons, as well as for arbitrary values of the anisotropy. The
anisotropic screening length can be larger or smaller than the isotropic one,
and this depends on whether the comparison is made at equal temperatures or at
equal entropy densities. For generic motion we find that: (i) mesons dissociate
above a certain critical value of the anisotropy, even at zero temperature;
(ii) there is a limiting velocity for mesons in the plasma, even at zero
temperature; (iii) in the ultra-relativistic limit the screening length scales
as with \epsilon =1/2, in contrast with the isotropic result
\epsilon =1/4.Comment: 39 pages, 26 figures; v2: minor changes, added reference
Jet quenching in a strongly coupled anisotropic plasma
The jet quenching parameter of an anisotropic plasma depends on the relative
orientation between the anisotropic direction, the direction of motion of the
parton, and the direction along which the momentum broadening is measured. We
calculate the jet quenching parameter of an anisotropic, strongly coupled N=4
plasma by means of its gravity dual. We present the results for arbitrary
orientations and arbitrary values of the anisotropy. The anisotropic value can
be larger or smaller than the isotropic one, and this depends on whether the
comparison is made at equal temperatures or at equal entropy densities. We
compare our results to analogous calculations for the real-world quark-gluon
plasma and find agreement in some cases and disagreement in others.Comment: 22 pages, 10 figures; v2: minor changes, added reference. Extends
arXiv:1202.369
Drag force in a strongly coupled anisotropic plasma
We calculate the drag force experienced by an infinitely massive quark
propagating at constant velocity through an anisotropic, strongly coupled N=4
plasma by means of its gravity dual. We find that the gluon cloud trailing
behind the quark is generally misaligned with the quark velocity, and that the
latter is also misaligned with the force. The drag coefficient can be
larger or smaller than the corresponding isotropic value depending on the
velocity and the direction of motion. In the ultra-relativistic limit we find
that generically . We discuss the conditions under which this
behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference
Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma
We extend our analysis of a IIB supergravity solution dual to a spatially
anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is
static, possesses an anisotropic horizon, and is completely regular. The full
geometry can be viewed as a renormalization group flow from an AdS geometry in
the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can
be equivalently understood as resulting from a position-dependent theta-term or
from a non-zero number density of dissolved D7-branes. The holographic stress
tensor is conserved and anisotropic. The presence of a conformal anomaly plays
an important role in the thermodynamics. The phase diagram exhibits homogeneous
and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase
displays instabilities reminiscent of those of weakly coupled plasmas. We
comment on similarities with QCD at finite baryon density and with the
phenomenon of cavitation.Comment: 62 pages, 13 figures; v2: typos fixed, added reference
The Chiral MagnetoHydroDynamics of QCD fluid at RHIC and LHC
The experimental results on heavy ion collisions at RHIC and LHC indicate
that QCD plasma behaves as a nearly perfect fluid described by relativistic
hydrodynamics. Hydrodynamics is an effective low-energy Theory Of Everything
stating that the response of a system to external perturbations is dictated by
conservation laws that are a consequence of the symmetries of the underlying
theory. In the case of QCD fluid produced in heavy ion collisions, this theory
possesses anomalies, so some of the apparent classical symmetries are broken by
quantum effects. Even though the anomalies appear as a result of UV
regularization and so look like a short distance phenomenon, it has been
realized recently that they also affect the large distance, macroscopic
behavior in hydrodynamics. One of the manifestations of anomalies in
relativistic hydrodynamics is the Chiral Magnetic Effect (CME). At this
conference, a number of evidences for CME have been presented, including i) the
disappearance of charge asymmetry fluctuations in the low-energy RHIC data
where the energy density is thought to be below the critical one for
deconfinement; ii) the observation of charge asymmetry fluctuations in Pb-Pb
collisions at the LHC. Here I give a three-page summary of some of the recent
theoretical and experimental developments and of the future tests that may
allow to establish (or to refute) the CME as the origin of the observed charge
asymmetry fluctuations.Comment: 4 pages, talk at Quark Matter 2011 Conference, Annecy, France, 23-28
May 201
