185 research outputs found
Risk of aortic aneurysm or dissection following use of fluoroquinolones: a retrospective multinational network cohort study
Background:
Fluoroquinolones (FQs) are commonly used to treat urinary tract infections (UTIs), but some studies have suggested they may increase the risk of aortic aneurysm or dissection (AA/AD). However, no large-scale international study has thoroughly assessed this risk.
//
Methods:
A retrospective cohort study was conducted using a large, distributed network analysis across 14 databases from 5 countries (United States, South Korea, Japan, Taiwan, and Australia). The study included 13,588,837 patients aged 35 or older who initiated systemic fluoroquinolones (FQs) or comparable antibiotics (trimethoprim with or without sulfamethoxazole [TMP] or cephalosporins [CPHs]) for UTI treatment in the outpatient setting between JAN 01, 2010 and DEC 31, 2019. Patients were included if at the index date they had at least 365 days of prior observation and were not hospitalised for any reason on or within 7 days prior to the index date. The primary outcome was AA/AD occurrence within 60 days of exposure, with secondary outcomes examining AA and AD separately. Cox proportional hazards models with 1:1 propensity score (PS) matching were used to estimate the risk, with results calibrated using negative control outcomes. Analyses were subjected to pre-defined study diagnostics, and only those passing all diagnostics were reported. Hazard ratios (HRs) were pooled using Bayesian random-effects meta-analysis.
//
Findings:
Among analyses that passed diagnostics there were 1,954,798 and 1,195,962 propensity-matched pairs for the FQ versus TMP and FQ versus CPH comparisons respectively. For the 60-day follow-up there was no difference in risk of AA/AD between FQ and TMP (absolute rate difference [ARD], 0.21 per 1000 person-year; calibrated HR, 0.91 [95% CI 0.73–1.10]). There was no significant difference in risk for FQ versus CPH (ARD, 0.11 per 1000 person-year; calibrated HR, 1.01 [95% CI 0.82–1.25]).
//
Interpretation:
This large-scale study used a rigorous design with objective diagnostics to address bias and confounding. There was no increased risk of AA/AD associated with FQ compared to TMP or CPH in patients treated for UTI in the outpatient setting. As we only examined FQ used to treat UTIs in the outpatient setting, the results may not be generalisable to other indications with different severity.
//
Funding:
Yonsei University College of Medicine, Government-wide R&D Fund project for infectious disease research (GFID), Republic of Korea, National Health and Medical Research Council (NHMRC) Australian Government. Department of Veterans Affairs (VA) Informatics and Computing Infrastructure (VINCI), Department of Veterans Affairs, the United States Government
Predictors of diagnostic transition from major depressive disorder to bipolar disorder: a retrospective observational network study
Many patients with bipolar disorder (BD) are initially misdiagnosed with major depressive disorder (MDD) and are treated with antidepressants, whose potential iatrogenic effects are widely discussed. It is unknown whether MDD is a comorbidity of BD or its earlier stage, and no consensus exists on individual conversion predictors, delaying BD’s timely recognition and treatment. We aimed to build a predictive model of MDD to BD conversion and to validate it across a multi-national network of patient databases using the standardization afforded by the Observational Medical Outcomes Partnership (OMOP) common data model. Five “training” US databases were retrospectively analyzed: IBM MarketScan CCAE, MDCR, MDCD, Optum EHR, and Optum Claims. Cyclops regularized logistic regression models were developed on one-year MDD-BD conversion with all standard covariates from the HADES PatientLevelPrediction package. Time-to-conversion Kaplan-Meier analysis was performed up to a decade after MDD, stratified by model-estimated risk. External validation of the final prediction model was performed across 9 patient record databases within the Observational Health Data Sciences and Informatics (OHDSI) network internationally. The model’s area under the curve (AUC) varied 0.633–0.745 (µ = 0.689) across the five US training databases. Nine variables predicted one-year MDD-BD transition. Factors that increased risk were: younger age, severe depression, psychosis, anxiety, substance misuse, self-harm thoughts/actions, and prior mental disorder. AUCs of the validation datasets ranged 0.570–0.785 (µ = 0.664). An assessment algorithm was built for MDD to BD conversion that allows distinguishing as much as 100-fold risk differences among patients and validates well across multiple international data sources
Paleogene Radiation of a Plant Pathogenic Mushroom
Background: The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods: The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results: Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions: The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our result
Novel Root-Fungus Symbiosis in Ericaceae: Sheathed Ericoid Mycorrhiza Formed by a Hitherto Undescribed Basidiomycete with Affinities to Trechisporales
Ericaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed ‘sheathed ericoid mycorrhiza’, discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity) to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet remain undetected when subject to amplification by ‘universal’ primers. The lignocellulolytic assay suggests the basidiomycete may confer host adaptations distinct from those provisioned by the so far investigated ascomycetous ErM fungi
Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode
<p>Abstract</p> <p>Background</p> <p>The fungal genus <it>Serpula </it>(Serpulaceae, Boletales) comprises several saprotrophic (brown rot) taxa, including the aggressive house-infecting dry rot fungus <it>Serpula lacrymans</it>. Recent phylogenetic analyses have indicated that the ectomycorrhiza forming genera <it>Austropaxillus </it>and <it>Gymnopaxillus </it>cluster within <it>Serpula</it>. In this study we use DNA sequence data to investigate phylogenetic relationships, historical biogeography of, and nutritional mode transitions in Serpulaceae.</p> <p>Results</p> <p>Our results corroborate that the two ectomycorrhiza-forming genera, <it>Austropaxillus </it>and <it>Gymnopaxillus</it>, form a monophyletic group nested within the saprotrophic genus <it>Serpula</it>, and that the <it>Serpula </it>species <it>S. lacrymans </it>and <it>S. himantioides </it>constitute the sister group to the <it>Austropaxillus</it>-<it>Gymnopaxillus </it>clade. We found that both vicariance (Beringian) and long distance dispersal events are needed to explain the phylogeny and current distributions of taxa within Serpulaceae. Our results also show that the transition from brown rot to mycorrhiza has happened only once in a monophyletic Serpulaceae, probably between 50 and 22 million years before present.</p> <p>Conclusions</p> <p>This study supports the growing understanding that the same geographical barriers that limit plant- and animal dispersal also limit the spread of fungi, as a combination of vicariance and long distance dispersal events are needed to explain the present patterns of distribution in Serpulaceae. Our results verify the transition from brown rot to ECM within Serpulaceae between 50 and 22 MyBP.</p
Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions
<p>Abstract</p> <p>Background</p> <p><it>Cortinarius </it>species in section <it>Calochroi </it>display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) <it>C</it>. <it>arcuatorum</it>, 2) <it>C. aureofulvus</it>, 3) <it>C</it>. <it>elegantior </it>and 4) <it>C. napus</it>, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification.</p> <p>Results</p> <p>Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in <it>C</it>. <it>arcuatorum </it>and <it>C</it>. <it>elegantior</it>, while <it>C</it>. <it>aureofulvus </it>showed considerably less population structure and <it>C. napus </it>lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within <it>C</it>. <it>arcuatorum, C. aureofulvus </it>and <it>C</it>. <it>elegantior </it>show little or no morphological differentiation, whereas in <it>C. napus </it>there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of <it>C. albobrunnoides </it>and <it>C. albobrunnoides </it>var. <it>violaceovelatus </it>were identical to one another and are treated as one species with a wider range of geographic distribution under <it>C. napus</it>.</p> <p>Conclusions</p> <p>Our results indicate that each of the <it>Calochroi </it>species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of <it>C</it>. <it>arcuatorum </it>diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in <it>C</it>. <it>elegantior </it>gave rise to the New World and Old World haplotypes, respectively; and 3) the low levels of genetic divergence within <it>C</it>. <it>aureofulvus </it>and <it>C</it>. <it>napus </it>may be the result of more recent demographic population expansions. The scenario of migration via the Bering Land Bridge provides the most probable explanation for contemporaneous disjunct geographic distributions of these species, but it does not offer an explanation for the low degree of genetic divergence between populations of <it>C. aureofulvus </it>and <it>C. napus</it>. Our findings are mostly consistent with the designation of New World allopatric populations as separate species from the European counterpart species <it>C. arcuatorum </it>and <it>C. elegantior</it>. We propose the synonymy of <it>C. albobrunnoides</it>, <it>C. albobrunnoides </it>var. <it>violaceovelatus </it>and <it>C. subpurpureophyllus </it>var. <it>sulphureovelatus </it>with <it>C. napus</it>. The results also reinforce previous observations that linked <it>C. arcuatorum </it>and <it>C. aureofulvus </it>displaying distributions in parts of North America and Europe. Interpretations of the population structure of these fungi suggest that host tree history has heavily influenced their modern distributions; however, the complex issues related to co-migration of these fungi with their tree hosts remain unclear at this time.</p
Comparative Genomics of the Mating-Type Loci of the Mushroom Flammulina velutipes Reveals Widespread Synteny and Recent Inversions
Mating-type loci of mushroom fungi contain master regulatory genes that control recognition between compatible nuclei, maintenance of compatible nuclei as heterokaryons, and fruiting body development. Regions near mating-type loci in fungi often show adapted recombination, facilitating the generation of novel mating types and reducing the production of self-compatible mating types. Compared to other fungi, mushroom fungi have complex mating-type systems, showing both loci with redundant function (subloci) and subloci with many alleles. The genomic organization of mating-type loci has been solved in very few mushroom species, which complicates proper interpretation of mating-type evolution and use of those genes in breeding programs.We report a complete genetic structure of the mating-type loci from the tetrapolar, edible mushroom Flammulina velutipes mating type A3B3. Two matB3 subloci, matB3a that contains a unique pheromone and matB3b, were mapped 177 Kb apart on scaffold 1. The matA locus of F. velutipes contains three homeodomain genes distributed over 73 Kb distant matA3a and matA3b subloci. The conserved matA region in Agaricales approaches 350 Kb and contains conserved recombination hotspots showing major rearrangements in F. velutipes and Schizophyllum commune. Important evolutionary differences were indicated; separation of the matA subloci in F. velutipes was diverged from the Coprinopsis cinerea arrangement via two large inversions whereas separation in S. commune emerged through transposition of gene clusters.In our study we determined that the Agaricales have very large scale synteny at matA (∼350 Kb) and that this synteny is maintained even when parts of this region are separated through chromosomal rearrangements. Four conserved recombination hotspots allow reshuffling of large fragments of this region. Next to this, it was revealed that large distance subloci can exist in matB as well. Finally, the genes that were linked to specific mating types will serve as molecular markers in breeding
Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates
BACKGROUND: Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. METHODOLOGY/PRINCIPAL FINDINGS: DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. CONCLUSIONS/SIGNIFICANCE: Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups
Species Delimitation in Taxonomically Difficult Fungi: The Case of Hymenogaster
False truffles are ecologically important as mycorrhizal partners of trees and evolutionarily highly interesting as the result of a shift from epigeous mushroom-like to underground fruiting bodies. Since its first description by Vittadini in 1831, inappropriate species concepts in the highly diverse false truffle genus Hymenogaster has led to continued confusion, caused by a large variety of prevailing taxonomical opinions.In this study, we reconsidered the species delimitations in Hymenogaster based on a comprehensive collection of Central European taxa comprising more than 140 fruiting bodies from 20 years of field work. The ITS rDNA sequence dataset was subjected to phylogenetic analysis as well as clustering optimization using OPTSIL software.Among distinct species concepts from the literature used to create reference partitions for clustering optimization, the broadest concept resulted in the highest agreement with the ITS data. Our results indicate a highly variable morphology of H. citrinus and H. griseus, most likely linked to environmental influences on the phenology (maturity, habitat, soil type and growing season). In particular, taxa described in the 19(th) century frequently appear as conspecific. Conversely, H. niveus appears as species complex comprising seven cryptic species with almost identical macro- and micromorphology. H. intermedius and H. huthii are described as novel species, each of which with a distinct morphology intermediate between two species complexes. A revised taxonomy for one of the most taxonomically difficult genera of Basidiomycetes is proposed, including an updated identification key. The (semi-)automated selection among species concepts used here is of importance for the revision of taxonomically problematic organism groups in general
- …
