68 research outputs found
Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands
Permafrost stores globally significant amounts of carbon (C) which may start to decompose and be released to the atmosphere in form of carbon dioxide (CO 2 ) and methane (CH 4 ) as global warming promotes extensive thaw. This permafrost carbon feedback to climate is currently considered to be the most important carbon-cycle feedback missing from climate models. Predicting the magnitude of the feedback requires a better understanding of how differences in environmental conditions post-thaw, particularly hydrological conditions, control the rate at which C is released to the atmosphere. In the sporadic and discontinuous permafrost regions of north-west Canada, we measured the rates and sources of C released from relatively undisturbed ecosystems, and compared these with forests experiencing thaw following wildfire (well-drained, oxic conditions) and collapsing peat plateau sites (water-logged, anoxic conditions). Using radiocarbon analyses, we detected substantial contributions of deep soil layers and/or previously-frozen sources in our well-drained sites. In contrast, no loss of previously-frozen C as CO 2 was detected on average from collapsed peat plateaus regardless of time since thaw and despite the much larger stores of available C that were exposed. Furthermore, greater rates of new peat formation resulted in these soils becoming stronger C sinks and this greater rate of uptake appeared to compensate for a large proportion of the increase in CH 4 emissions from the collapse wetlands. We conclude that in the ecosystems we studied, changes in soil moisture and oxygen availability may be even more important than previously predicted in determining the effect of permafrost thaw on ecosystem C balance and, thus, it is essential to monitor, and simulate accurately, regional changes in surface wetness
Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2):a multicentre observational cohort study
Background:
Cerebral microbleeds are a potential neuroimaging biomarker of cerebral small vessel diseases that are prone to intracranial bleeding. We aimed to determine whether presence of cerebral microbleeds can identify patients at high risk of symptomatic intracranial haemorrhage when anticoagulated for atrial fibrillation after recent ischaemic stroke or transient ischaemic attack.
Methods:
Our observational, multicentre, prospective inception cohort study recruited adults aged 18 years or older from 79 hospitals in the UK and one in the Netherlands with atrial fibrillation and recent acute ischaemic stroke or transient ischaemic attack, treated with a vitamin K antagonist or direct oral anticoagulant, and followed up for 24 months using general practitioner and patient postal questionnaires, telephone interviews, hospital visits, and National Health Service digital data on hospital admissions or death. We excluded patients if they could not undergo MRI, had a definite contraindication to anticoagulation, or had previously received therapeutic anticoagulation. The primary outcome was symptomatic intracranial haemorrhage occurring at any time before the final follow-up at 24 months. The log-rank test was used to compare rates of intracranial haemorrhage between those with and without cerebral microbleeds. We developed two prediction models using Cox regression: first, including all predictors associated with intracranial haemorrhage at the 20% level in univariable analysis; and second, including cerebral microbleed presence and HAS-BLED score. We then compared these with the HAS-BLED score alone. This study is registered with ClinicalTrials.gov, number NCT02513316.
Findings:
Between Aug 4, 2011, and July 31, 2015, we recruited 1490 participants of whom follow-up data were available for 1447 (97%), over a mean period of 850 days (SD 373; 3366 patient-years). The symptomatic intracranial haemorrhage rate in patients with cerebral microbleeds was 9·8 per 1000 patient-years (95% CI 4·0–20·3) compared with 2·6 per 1000 patient-years (95% CI 1·1–5·4) in those without cerebral microbleeds (adjusted hazard ratio 3·67, 95% CI 1·27–10·60). Compared with the HAS-BLED score alone (C-index 0·41, 95% CI 0·29–0·53), models including cerebral microbleeds and HAS-BLED (0·66, 0·53–0·80) and cerebral microbleeds, diabetes, anticoagulant type, and HAS-BLED (0·74, 0·60–0·88) predicted symptomatic intracranial haemorrhage significantly better (difference in C-index 0·25, 95% CI 0·07–0·43, p=0·0065; and 0·33, 0·14–0·51, p=0·00059, respectively).
Interpretation:
In patients with atrial fibrillation anticoagulated after recent ischaemic stroke or transient ischaemic attack, cerebral microbleed presence is independently associated with symptomatic intracranial haemorrhage risk and could be used to inform anticoagulation decisions. Large-scale collaborative observational cohort analyses are needed to refine and validate intracranial haemorrhage risk scores incorporating cerebral microbleeds to identify patients at risk of net harm from oral anticoagulation.
Funding:
The Stroke Association and the British Heart Foundation
Cognitive Impairment Before Intracerebral Hemorrhage Is Associated With Cerebral Amyloid Angiopathy
Background and Purpose—Although the association between cerebral amyloid angiopathy (CAA) and cognitive impairment is increasingly recognized, it is not clear whether this is because of the impact of recurrent intracerebral hemorrhage (ICH) events, disruptions caused by cerebral small vessel damage, or both. We investigated this by considering whether cognitive impairment before ICH was associated with neuroimaging features of CAA on magnetic resonance imaging.
Methods—We studied 166 patients with neuroimaging-confirmed ICH recruited to a prospective multicentre observational study. Preexisting cognitive impairment was determined using the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Magnetic resonance imaging markers of cerebral small vessel disease, including CAA, were rated by trained observers according to consensus guidelines.
Results—The prevalence of cognitive impairment before ICH was 24.7% (n=41) and, in adjusted analyses, was associated with fulfilling the modified Boston criteria for probable CAA at presentation (odds ratio, 4.01; 95% confidence interval, 1.53–10.51; P=0.005) and a higher composite CAA score (for each point increase, odds ratio, 1.42; 95% confidence interval, 1.03–1.97; P=0.033). We also found independent associations between pre-ICH cognitive decline and the presence of cortical superficial siderosis, strictly lobar microbleeds, and lobar ICH location, but not with other neuroimaging markers, or a composite small vessel disease score.
Conclusions—CAA (defined using magnetic resonance imaging markers) is associated with cognitive decline before symptomatic ICH. This provides evidence that small vessel disruption in CAA makes an independent contribution to cognitive impairment, in addition to effects due to brain injury caused directly by ICH
Baseline factors associated with early and late death in intracerebral haemorrhage survivors
Background and purpose:
The aim of this study was to determine whether early and late death are associated with different baseline factors in intracerebral haemorrhage (ICH) survivors.
Methods:
This was a secondary analysis of the multicentre prospective observational CROMIS‐2 ICH study. Death was defined as ‘early’ if occurring within 6 months of study entry and ‘late’ if occurring after this time point.
Results:
In our cohort (n = 1094), there were 306 deaths (per 100 patient‐years: absolute event rate, 11.7; 95% confidence intervals, 10.5–13.1); 156 were ‘early’ and 150 ‘late’. In multivariable analyses, early death was independently associated with age [per year increase; hazard ratio (HR), 1.05, P = 0.003], history of hypertension (HR, 1.89, P = 0.038), pre‐event modified Rankin scale score (per point increase; HR, 1.41, P < 0.0001), admission National Institutes of Health Stroke Scale score (per point increase; HR, 1.11, P < 0.0001) and haemorrhage volume >60 mL (HR, 4.08, P < 0.0001). Late death showed independent associations with age (per year increase; HR, 1.04, P = 0.003), pre‐event modified Rankin scale score (per point increase; HR, 1.42, P = 0.001), prior anticoagulant use (HR, 2.13, P = 0.028) and the presence of intraventricular extension (HR, 1.73, P = 0.033) in multivariable analyses. In further analyses where time was treated as continuous (rather than dichotomized), the HR of previous cerebral ischaemic events increased with time, whereas HRs for Glasgow Coma Scale score, National Institutes of Health Stroke Scale score and ICH volume decreased over time.
Conclusions:
We provide new evidence that not all baseline factors associated with early mortality after ICH are associated with mortality after 6 months and that the effects of baseline variables change over time. Our findings could help design better prognostic scores for later death after ICH
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Effect of small-vessel disease on cognitive trajectory after atrial fibrillation-related ischaemic stroke or TIA
Recommended from our members
Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study
Summary Background: Cerebral microbleeds are a potential neuroimaging biomarker of cerebral small vessel diseases that are prone to intracranial bleeding. We aimed to determine whether presence of cerebral microbleeds can identify patients at high risk of symptomatic intracranial haemorrhage when anticoagulated for atrial fibrillation after recent ischaemic stroke or transient ischaemic attack. Methods: Our observational, multicentre, prospective inception cohort study recruited adults aged 18 years or older from 79 hospitals in the UK and one in the Netherlands with atrial fibrillation and recent acute ischaemic stroke or transient ischaemic attack, treated with a vitamin K antagonist or direct oral anticoagulant, and followed up for 24 months using general practitioner and patient postal questionnaires, telephone interviews, hospital visits, and National Health Service digital data on hospital admissions or death. We excluded patients if they could not undergo MRI, had a definite contraindication to anticoagulation, or had previously received therapeutic anticoagulation. The primary outcome was symptomatic intracranial haemorrhage occurring at any time before the final follow-up at 24 months. The log-rank test was used to compare rates of intracranial haemorrhage between those with and without cerebral microbleeds. We developed two prediction models using Cox regression: first, including all predictors associated with intracranial haemorrhage at the 20% level in univariable analysis; and second, including cerebral microbleed presence and HAS-BLED score. We then compared these with the HAS-BLED score alone. This study is registered with ClinicalTrials.gov, number NCT02513316. Findings: Between Aug 4, 2011, and July 31, 2015, we recruited 1490 participants of whom follow-up data were available for 1447 (97%), over a mean period of 850 days (SD 373; 3366 patient-years). The symptomatic intracranial haemorrhage rate in patients with cerebral microbleeds was 9·8 per 1000 patient-years (95% CI 4·0–20·3) compared with 2·6 per 1000 patient-years (95% CI 1·1–5·4) in those without cerebral microbleeds (adjusted hazard ratio 3·67, 95% CI 1·27–10·60). Compared with the HAS-BLED score alone (C-index 0·41, 95% CI 0·29–0·53), models including cerebral microbleeds and HAS-BLED (0·66, 0·53–0·80) and cerebral microbleeds, diabetes, anticoagulant type, and HAS-BLED (0·74, 0·60–0·88) predicted symptomatic intracranial haemorrhage significantly better (difference in C-index 0·25, 95% CI 0·07–0·43, p=0·0065; and 0·33, 0·14–0·51, p=0·00059, respectively). Interpretation In patients with atrial fibrillation anticoagulated after recent ischaemic stroke or transient ischaemic attack, cerebral microbleed presence is independently associated with symptomatic intracranial haemorrhage risk and could be used to inform anticoagulation decisions. Large-scale collaborative observational cohort analyses are needed to refine and validate intracranial haemorrhage risk scores incorporating cerebral microbleeds to identify patients at risk of net harm from oral anticoagulation. Funding The Stroke Association and the British Heart Foundation
Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study
BACKGROUND: Although levels of iron are known to be increased in the brains of patients with Parkinson disease (PD), epidemiological evidence on a possible effect of iron blood levels on PD risk is inconclusive, with effects reported in opposite directions. Epidemiological studies suffer from problems of confounding and reverse causation, and mendelian randomization (MR) represents an alternative approach to provide unconfounded estimates of the effects of biomarkers on disease. We performed a MR study where genes known to modify iron levels were used as instruments to estimate the effect of iron on PD risk, based on estimates of the genetic effects on both iron and PD obtained from the largest sample meta-analyzed to date. METHODS AND FINDINGS: We used as instrumental variables three genetic variants influencing iron levels, HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum iron were based on a recent genome-wide meta-analysis of 21,567 individuals, while estimates of their effect on PD risk were obtained through meta-analysis of genome-wide and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR estimates of the effect of iron on PD were obtained for each variant and pooled by meta-analysis. We investigated heterogeneity across the three estimates as an indication of possible pleiotropy and found no evidence of it. The combined MR estimate showed a statistically significant protective effect of iron, with a relative risk reduction for PD of 3% (95% CI 1%-6%; p = 0.001) per 10 microg/dl increase in serum iron. CONCLUSIONS: Our study suggests that increased iron levels are causally associated with a decreased risk of developing PD. Further studies are needed to understand the pathophysiological mechanism of action of serum iron on PD risk before recommendations can be mad
Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: The pilot phase of a randomised controlled trial
Summary:
Background Preoperative (neoadjuvant) chemotherapy and radiotherapy are more eff ective than similar postoperative
treatment for oesophageal, gastric, and rectal cancers, perhaps because of more eff ective micrometastasis eradication
and reduced risk of incomplete excision and tumour cell shedding during surgery. The FOxTROT trial aims to
investigate the feasibility, safety, and effi cacy of preoperative chemotherapy for colon cancer.
Methods In the pilot stage of this randomised controlled trial, 150 patients with radiologically staged locally advanced
(T3 with ≥5 mm invasion beyond the muscularis propria or T4) tumours from 35 UK centres were randomly
assigned (2:1) to preoperative (three cycles of OxMdG [oxaliplatin 85 mg/m², l-folinic acid 175 mg, fl uorouracil
400 mg/m² bolus, then 2400 mg/m² by 46 h infusion] repeated at 2-weekly intervals followed by surgery and a
further nine cycles of OxMdG) or standard postoperative chemotherapy (12 cycles of OxMdG). Patients with KRAS
wild-type tumours were randomly assigned (1:1) to receive panitumumab (6 mg/kg; every 2 weeks with the fi rst
6 weeks of chemotherapy) or not. Treatment allocation was through a central randomisation service using a
minimised randomisation procedure including age, radiological T and N stage, site of tumour, and presence of
defunctioning colostomy as stratifi cation variables. Primary outcome measures of the pilot phase were feasibility,
safety, and tolerance of preoperative therapy, and accuracy of radiological staging. Analysis was by intention to treat.
This trial is registered, number ISRCTN 87163246.
Findings 96% (95 of 99) of patients started and 89% (85 of 95) completed preoperative chemotherapy with grade 3–4
gastrointestinal toxicity in 7% (seven of 94) of patients. All 99 tumours in the preoperative group were resected, with
no signifi cant diff erences in postoperative morbidity between the preoperative and control groups: 14% (14 of 99)
versus 12% (six of 51) had complications prolonging hospital stay (p=0·81). 98% (50 of 51) of postoperative
chemotherapy patients had T3 or more advanced tumours confi rmed at post-resection pathology compared with 91%
(90 of 99) of patients following preoperative chemotherapy (p=0·10). Preoperative therapy resulted in signifi cant
downstaging of TNM5 compared with the postoperative group (p=0·04), including two pathological complete
responses, apical node involvement (1% [one of 98] vs 20% [ten of 50], p<0·0001), resection margin involvement (4%
[ four of 99] vs 20% [ten of 50], p=0·002), and blinded centrally scored tumour regression grading: 31% (29 of 94) vs 2%
(one of 46) moderate or greater regression (p=0·0001).
Interpretation Preoperative chemotherapy for radiologically staged, locally advanced operable primary colon cancer is
feasible with acceptable toxicity and perioperative morbidity. Proceeding to the phase 3 trial, to establish whether the
encouraging pathological responses seen with preoperative therapy translates into improved long-term oncological
outcome, is appropriate
Biomarker-guided antibiotic duration for hospitalized patients with suspected sepsis: the ADAPT-sepsis randomized clinical trial
Importance: For hospitalized critically ill adults with suspected sepsis, procalcitonin (PCT) and C-reactive protein (CRP) monitoring protocols can guide the duration of antibiotic therapy, but the evidence of the effect and safety of these protocols remains uncertain.
Objective: To determine whether decisions based on assessment of CRP or PCT safely results in a reduction in the duration of antibiotic therapy.
Design, Setting, and Participants: A multicenter, intervention-concealed randomized clinical trial, involving 2760 adults (≥18 years), in 41 UK National Health Service (NHS) intensive care units, requiring critical care within 24 hours of initiating intravenous antibiotics for suspected sepsis and likely to continue antibiotics for at least 72 hours.
Intervention: From January 1, 2018, to June 5, 2024, 918 patients were assigned to the daily PCT-guided protocol, 924 to the daily CRP-guided protocol, and 918 assigned to standard care.
Main Outcomes and Measures: The primary outcomes were total duration of antibiotics (effectiveness) and all-cause mortality (safety) to 28 days. Secondary outcomes included critical care unit data and hospital stay data. Ninety-day all-cause mortality was also collected.
Results: Among the randomized patients (mean age 60.2 [SD, 15.4] years; 60.3% males), there was a significant reduction in antibiotic duration from randomization to 28 days for those in the daily PCT-guided protocol compared with standard care (mean duration, 10.7 [SD, 7.6] days for standard care and 9.8 [SD, 7.2] days for PCT; mean difference, 0.88 days; 95% CI, 0.19 to 1.58, P = .01). For all-cause mortality up to 28 days, the daily PCT-guided protocol was noninferior to standard care, where the noninferiority margin was set at 5.4% (19.4% [170 of 878] of patients receiving standard care; 20.9% [184 of 879], PCT; absolute difference, 1.57; 95% CI, −2.18 to 5.32; P = .02). No difference was found in antibiotic duration for standard care vs daily CRP-guided protocol (mean duration, 10.6 [7.7] days for CRP; mean difference, 0.09; 95% CI, −0.60 to 0.79; P = .79). For all-cause mortality, the daily CRP-guided protocol was inconclusive compared with standard care (21.1% [184 of 874] for CRP; absolute difference, 1.69; 95% CI, −2.07 to 5.45; P = .03).
Conclusions and Relevance: Care guided by measurement of PCT reduces antibiotic duration safely compared with standard care, but CRP does not. All-cause mortality for CRP was inconclusive.
Trial Registration: isrctn.org Identifier: ISRCTN4747324
- …
