341 research outputs found
Entrepreneurial-intention constraint model: A comparative analysis among post-graduate management students in India, Singapore and Malaysia
YesAlthough literature on entrepreneurship has increasingly focused on intention-based models, not much emphasis has been laid on understanding the combined effect of contextual and situational factors along with support of university environment on the formation of entrepreneurial intention among students. In an effort to make up for this shortfall, by taking Theory of Planned Behavior as basic framework, the present study seeks to understand the influence of three of the most important factors, viz. (a) endogenous barriers, (b) exogenous environment, and (c) university environment and support on the entrepreneurial intention among management students. The study sample consisted of 1,097 students, wherein 526 students were from India, 252 from Singapore, and 319 were from Malaysia. The results indicates that along with positive attitude and perceived behavioral control that directly influences entrepreneurial intention, university environment and support and exogenous environment also have an indirect but significant impact on shaping of entrepreneurial intention among students. With this, it was found that exogenous environment was found to have a negative relationship with both attitude towards behavior and perceived behavioral control for all three countries.The full-text of this article will be released for public view at the end of the publisher embargo on 2 Jun 2018
Using Light to Improve Commercial Value
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
Impact of screening on cervical cancer incidence: A population-based case-control study in the United States.
Cervical cancer is widely preventable through screening, but little is known about the duration of protection offered by a negative screen in North America. A case-control study was conducted with records from population-based registries in New Mexico. Cases were women diagnosed with cervical cancer in 2006-2016, obtained from the Tumor Registry. Five controls per case from the New Mexico HPV Pap Registry were matched to cases by sex, age and place of residence. Dates and results of all cervical screening and diagnostic tests since 2006 were identified from the pap registry. We estimated the odds ratio of nonlocalized (Stage II+) and localized (Stage I) cervical cancer associated with attending screening in the 3 years prior to case-diagnosis compared to women not screened in 5 years. Of 876 cases, 527 were aged 25-64 years with ≥3 years of potential screening data. Only 38% of cases and 61% of controls attended screening in a 3-year period. Women screened in the 3 years prior to diagnosis had 83% lower risk of nonlocalized cancer (odds ratio [OR] = 0.17, 95% CI: 0.12-0.24) and 48% lower odds of localized cancer (OR = 0.52, 95% CI: 0.38-0.72), compared to women not screened in the 5 years prior to diagnosis. Women remained at low risk of nonlocalized cancer for 3.5-5 years after a negative screen compared to women with no negative screens in the 5 years prior to diagnosis. Routine cervical screening is effective at preventing localized and nonlocalized cervical cancers; 3 yearly screening prevents 83% of nonlocalized cancers, with no additional benefit of more frequent screening. Increasing screening coverage remains essential to further reduce cervical cancer incidence.This work was supported by the US National Cancer Institute (NCI) U54CA164336 to CMW (CMW, CLW, MR) with subcontracts to Texas A & M University, College Station, Texas (YJM, DWG) and to University of Alabama at Birmingham (ICS) and by the US National Institute of Allergy and Infectious Diseases U19AI113187 to CMW with subcontract to Queen Mary University of London (QMUL) (JC, PDS). This project was also supported by Contract HHSN261201800014I, Task Order HHSN26100001 from the National Cancer Institute (CLW). In addition, support was received from Cancer Research UK programme grants C8161/A1689 to PDS (RL, CM) and C569/A16891 to JC, from NCI P30CA118100 (to CL Willman) (YJM) and the Ford Foundation (YJM)
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway
Choroidal melanoma metastasizing to maxillofacial bones
BACKGROUND: Melanomas are malignant neoplasm of melanocytic origin, commonly seen on skin and various mucous membranes. Melanomas are the commonest intraocular malignant tumour in the adults. CASE PRESENTATION: A 50-year-old female presented with complains of painless progressive swelling in right cheek region of two months duration. Examination revealed a 6 × 4 cm bony hard swelling in right zygomatic region near and below lateral canthus of right eye with loss of vision. Investigations revealed it to be a choroidal melanoma metastatising to the zygomatic bone. Patient was successfully treated by surgery. CONCLUSION: Choroidal melanoma, which commonly metastasizes to liver and lungs, never involves the lymph nodes and metastasis to facial bones is rare. Here we report a case of choroidal melanoma metastasizing to maxillofacial bones
A Discontinuous RNA Platform Mediates RNA Virus Replication: Building an Integrated Model for RNA–based Regulation of Viral Processes
Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA–RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA–RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA–based interaction spanning ∼3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes
Effects of Fostamatinib on the Pharmacokinetics of Oral Contraceptive, Warfarin, and the Statins Rosuvastatin and Simvastatin: Results From Phase I Clinical Studies
- …
