97 research outputs found

    Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties

    Get PDF
    Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics

    Distinct housing conditions reveal a major impact of adaptive immunity on the course of obesity-induced type 2 diabetes

    Get PDF
    Obesity is associated with adipose tissue inflammation, insulin resistance, and the development of type 2 diabetes (T2D). However, our knowledge is mostly based on conventional murine models and promising preclinical studies rarely translated into successful therapies. There is a growing awareness of the limitations of studies in laboratory mice, housed in abnormally hygienic specific pathogen-free (SPF) conditions, as relevant aspects of the human immune system remain unappreciated. Here, we assessed the impact of housing conditions on adaptive immunity and metabolic disease processes during high-fat diet (HFD). We therefore compared diet-induced obesity in SPF mice with those housed in non-SPF, so-called "antigen exposed" (AE) conditions. Surprisingly, AE mice fed a HFD maintained increased insulin levels to compensate for insulin resistance, which was reflected in islet hyperplasia and improved glucose tolerance compared to SPF mice. By contrast, we observed higher proportions of effector/memory T cell subsets in blood and liver of HFD AE mice accompanied by the development of nonalcoholic steatohepatitis-like liver pathology. Thus, our data demonstrate the impact of housing conditions on metabolic alterations. Studies in AE mice, in which physiological microbial exposure was restored, could provide a tool for revealing therapeutic targets for immune-based interventions for T2D patients

    Long-Term Signs of T Cell and Myeloid Cell Activation After Intestinal Transplantation With Cellular Rejections Contributing to Further Increase of CD16+ Cell Subsets

    Get PDF
    The intestine mediates a delicate balance between tolerogenic and inflammatory immune responses. The continuous pathogen encounter might also augment immune cell responses contributing to complications observed upon intestinal transplantation (ITx). We thus hypothesized that ITx patients show persistent signs of immune cell activation affecting both the adaptive and innate immune cell compartment. Information on the impact of intestinal grafts on immune cell composition, however, especially in the long-term is sparse. We here assessed activated and differentiated adaptive and innate immune subsets according to time, previous experience of cellular or antibody-mediated rejections or type of transplant after ITx applying multi-parametric flow cytometry, gene expression, serum cytokine and chemokine profiling. ITx patients showed an increase in CD16 expressing monocytes and myeloid dendritic cells (DCs) compared to healthy controls. This was even detectable in patients who were transplanted more than 10 years ago. Also, conventional CD4+ and CD8+ T cells showed persistent signs of activation counterbalanced by increased activated CCR4+ regulatory T cells. Patients with previous cellular rejections had even higher proportions of CD16+ monocytes and DCs, whereas transplanting higher donor mass with multi-visceral grafts was associated with increased T cell activation. The persistent inflammation and innate immune cell activation might contribute to unsatisfactory results after ITx

    Killer-like receptors and GPR56 progressive expression defines cytokine production of human CD4+ memory T cells

    Get PDF
    All memory T cells mount an accelerated response on antigen reencounter, but significant functional heterogeneity is present within the respective memory T-cell subsets as defined by CCR7 and CD45RA expression, thereby warranting further stratification. Here we show that several surface markers, including KLRB1, KLRG1, GPR56, and KLRF1, help define low, high, or exhausted cytokine producers within human peripheral and intrahepatic CD4+ memory T-cell populations. Highest simultaneous production of TNF and IFN-γ is observed in KLRB1+KLRG1+GPR56+ CD4 T cells. By contrast, KLRF1 expression is associated with T-cell exhaustion and reduced TNF/IFN-γ production. Lastly, TCRβ repertoire analysis and in vitro differentiation support a regulated, progressive expression for these markers during CD4+ memory T-cell differentiation. Our results thus help refine the classification of human memory T cells to provide insights on inflammatory disease progression and immunotherapy development

    NS1 Specific CD8(+) T-Cells with Effector Function and TRBV11 Dominance in a Patient with Parvovirus B19 Associated Inflammatory Cardiomyopathy

    Get PDF
    Background: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. Methodology and Principal Findings: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mg nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amico-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFN gamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFN gamma, IL2, IL27 and Tbet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low. Conclusions: Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes

    Dry-fog decontamination of microbiological safety cabinets after activities with SARS-CoV-2: cycle development and process validation for dry fogging with peroxyacetic acid

    Get PDF
    Hintergrund: Zu technischen Schutzmaßnahmen bei Labortätigkeiten mit Biostoffen gehören auch mikrobiologische Sicherheitswerkbänke (MSW), die durch Biostoffe kontaminiert sein können. Dies kann bei diagnostischer Tätigkeit mit SARS-CoV-2 auch solche MSW betreffen, die in der Schutzstufe 2 betrieben werden. Für die technische Freigabe kann eine Dekontamination aller mikrobiologisch belasteten Oberflächen der MSW erforderlich sein. Neben der Begasung mit Wasserstoffperoxid (H2O2) stellt die Trockenvernebelung von H2O2-stabilisierter Peroxyessigsäure (PES) eine weitere Alternative zur Begasung mit Formalin dar. Um die Wirksamkeit zu belegen, müssen allerdings diese Alternativen an den jeweiligen MSW-Modellen validiert werden. Methode: Die Validierungsstudie wurde an 4 verschiedenen MSW Klasse II unter Verwendung des „Mini Dry Fog“-Systems durchgeführt. Ergebnisse: Für die Inaktivierung von SARS-CoV-2 reichte eine Aerosolkonzentration von 0,03% PES und 0,15% H2O2 über 30 min Einwirkzeit aus. Zur Dekontamination der mit Sporen von Geobacillus stearothermophilus selber beschickten und an 9 unterschiedlichen Positionen in der MSW ausgebrachten Keimträger waren Wirkkonzentrationen von 1,0% PES und 5% H2O2 erforderlich. Kommerziell erhältliche Sporenkeimträger waren um den Faktor 4 empfindlicher, was in allen Positionen einer Reduktion um 106 entsprach. Schlussfolgerung: Trockenvernebelung von PES ist ein preisgünstiges, robustes und für behüllte Viren wie SARS-CoV-2 hoch wirksames Dekontaminationsverfahren für MSW. Die hohe Materialverträglichkeit, die nicht erforderliche Neutralisation, der niedrige pH, durch den im Vergleich zur H2O2-Begasung das Wirkungsspektrum erweitert wird, die deutlich kürzere Prozessdauer und geringere Investitionskosten sprechen für dieses Verfahren.Background: Technical protection measures for laboratory activities involving biological agents include biological safety cabinets (BSC) that may be contaminated. In the case of diagnostic activities with SARS-CoV-2, this may also affect BSC that are operated at protection level 2; therefore, decontamination of all contaminated surfaces of the BSC may be required. In addition to fumigation with hydrogen peroxide (H2O2), dry fogging of H2O2-stabilized peroxyacetic acid (PAA) represents another alternative to fumigation with formalin. However, to prove their efficacy, these alternatives need to be validated for each model of BSC. Methods: The validation study was performed on 4 different BSCs of Class II A2 using the “Mini Dry Fog” system. Results: An aerosol concentration of 0.03% PAA and 0.15% H2O2 during a 30 min exposure was sufficient to inactivate SARS-CoV-2. Effective concentrations of 1.0% PAA and 5% H2O2 were required to decontaminate the custom-prepared biological indicators loaded with spores of G. stearothermophilus and deployed at 9 different positions in the BSC. Commercial spore carriers were easier to inactivate by a factor of 4, which corresponded to a reduction of 106 in all localizations. Conclusions: Dry fogging with PAA is an inexpensive, robust, and highly effective decontamination method for BSCs for enveloped viruses such as SARS-CoV-2. The good material compatibility, lack of a requirement for neutralization, low pH – which increases the range of efficacy compared to H2O2 fumigation – the significantly shorter processing time, and the lower costs argue in favor of this method

    Prognostic implications of a CD8+ TEMRA to CD4+Treg imbalance in mandibular fracture healing: a prospective analysis of immune profiles

    Get PDF
    Introduction: Open reduction and fixation are the standard of care for treating mandibular fractures and usually lead to successful healing. However, complications such as delayed healing, non-union, and infection can compromise patient outcomes and increase healthcare costs. The initial inflammatory response, particularly the response involving specific CD8+ T cell subpopulations, is thought to play a critical role in healing long bone fractures. In this study, we investigated the role of these immune cell profiles in patients with impaired healing of mandibular fractures. Materials and methods: In this prospective study, we included patients with mandibular fractures surgically treated at Charité – Universitätsmedizin Berlin, Germany, between September 2020 and December 2022. We used follow-up imaging and clinical assessment to evaluate bone healing. In addition, we analyzed immune cell profiles using flow cytometry and quantified cytokine levels using electrochemiluminescence-based multiplex immunoassays in preoperative blood samples. Results: Out of the 55 patients enrolled, 38 met the inclusion criteria (30 men and 8 women; mean age 32.18 years). Radiographic evaluation revealed 31 cases of normal healing and 7 cases of incomplete consolidation, including 1 case of non-union. Patients with impaired healing exhibited increased levels of terminally differentiated effector memory CD8+ T cells (TEMRA) and a higher TEMRA to regulatory T cell (Treg) ratio, compared with those with normal healing. Conclusions: Our analysis of mandibular fracture cases confirms our initial hypothesis derived from long bone fracture healing: monitoring the TEMRA to Treg ratio in preoperative blood can be an early indicator of patients at risk of impaired bone healing. Radiologic follow-up enabled us to detect healing complications that might not be detected by clinical assessment only. This study highlights the potential of individual immune profiles to predict successful healing and may form the basis for future strategies to manage healing complications

    Prognostic implications of a CD8+ TEMRA to CD4+Treg imbalance in mandibular fracture healing: a prospective analysis of immune profiles

    Get PDF
    Introduction: Open reduction and fixation are the standard of care for treating mandibular fractures and usually lead to successful healing. However, complications such as delayed healing, non-union, and infection can compromise patient outcomes and increase healthcare costs. The initial inflammatory response, particularly the response involving specific CD8+ T cell subpopulations, is thought to play a critical role in healing long bone fractures. In this study, we investigated the role of these immune cell profiles in patients with impaired healing of mandibular fractures. Materials and methods: In this prospective study, we included patients with mandibular fractures surgically treated at Charité – Universitätsmedizin Berlin, Germany, between September 2020 and December 2022. We used follow-up imaging and clinical assessment to evaluate bone healing. In addition, we analyzed immune cell profiles using flow cytometry and quantified cytokine levels using electrochemiluminescence-based multiplex immunoassays in preoperative blood samples. Results: Out of the 55 patients enrolled, 38 met the inclusion criteria (30 men and 8 women; mean age 32.18 years). Radiographic evaluation revealed 31 cases of normal healing and 7 cases of incomplete consolidation, including 1 case of non-union. Patients with impaired healing exhibited increased levels of terminally differentiated effector memory CD8+ T cells (TEMRA) and a higher TEMRA to regulatory T cell (Treg) ratio, compared with those with normal healing. Conclusions: Our analysis of mandibular fracture cases confirms our initial hypothesis derived from long bone fracture healing: monitoring the TEMRA to Treg ratio in preoperative blood can be an early indicator of patients at risk of impaired bone healing. Radiologic follow-up enabled us to detect healing complications that might not be detected by clinical assessment only. This study highlights the potential of individual immune profiles to predict successful healing and may form the basis for future strategies to manage healing complications

    Prognostic implications of a CD8+ TEMRA to CD4+Treg imbalance in mandibular fracture healing: a prospective analysis of immune profiles

    Get PDF
    Introduction: Open reduction and fixation are the standard of care for treating mandibular fractures and usually lead to successful healing. However, complications such as delayed healing, non-union, and infection can compromise patient outcomes and increase healthcare costs. The initial inflammatory response, particularly the response involving specific CD8+ T cell subpopulations, is thought to play a critical role in healing long bone fractures. In this study, we investigated the role of these immune cell profiles in patients with impaired healing of mandibular fractures.Materials and methods: In this prospective study, we included patients with mandibular fractures surgically treated at Charité - Universitätsmedizin Berlin, Germany, between September 2020 and December 2022. We used follow-up imaging and clinical assessment to evaluate bone healing. In addition, we analyzed immune cell profiles using flow cytometry and quantified cytokine levels using electrochemiluminescence-based multiplex immunoassays in preoperative blood samples.Results: Out of the 55 patients enrolled, 38 met the inclusion criteria (30 men and 8 women; mean age 32.18 years). Radiographic evaluation revealed 31 cases of normal healing and 7 cases of incomplete consolidation, including 1 case of non-union. Patients with impaired healing exhibited increased levels of terminally differentiated effector memory CD8+ T cells (TEMRA) and a higher TEMRA to regulatory T cell (Treg) ratio, compared with those with normal healing.Conclusions: Our analysis of mandibular fracture cases confirms our initial hypothesis derived from long bone fracture healing: monitoring the TEMRA to Treg ratio in preoperative blood can be an early indicator of patients at risk of impaired bone healing. Radiologic follow-up enabled us to detect healing complications that might not be detected by clinical assessment only. This study highlights the potential of individual immune profiles to predict successful healing and may form the basis for future strategies to manage healing complications

    Individual immune cell and cytokine profiles determine platelet-rich plasma composition

    Get PDF
    Objective Platelet-rich plasma (PRP) therapy is increasingly popular to treat musculoskeletal diseases, including tendinopathies and osteoarthritis (OA). To date, it remains unclear to which extent PRP compositions are determined by the immune cell and cytokine profile of individuals or by the preparation method. To investigate this, we compared leukocyte and cytokine distributions of different PRP products to donor blood samples and assessed the effect of pro-inflammatory cytokines on chondrocytes. Design For each of three PRP preparations (ACP®, Angel™, and nSTRIDE® APS), products were derived using whole blood samples from twelve healthy donors. The cellular composition of PRP products was analyzed by flow cytometry using DURAClone antibody panels (DURAClone IM Phenotyping Basic and DURAClone IM T Cell Subsets). The MESO QuickPlex SQ 120 system was used to assess cytokine profiles (V-PLEX Proinflammatory Panel 1 Human Kit, Meso Scale Discovery). Primary human chondrocyte 2D and 3D in vitro cultures were exposed to recombinant IFN-γ and TNF-α. Proliferation and chondrogenic differentiation were quantitatively assessed. Results All three PRP products showed elevated portions of leukocytes compared to baseline levels in donor blood. Furthermore, the pro-inflammatory cytokines IFN-γ and TNF-α were significantly increased in nSTRIDE® APS samples compared to donor blood and other PRP products. The characteristics of all other cytokines and immune cells from the donor blood, including pro-inflammatory T cell subsets, were maintained in all PRP products. Chondrocyte proliferation was impaired by IFN-γ and enhanced by TNF-α treatment. Differentiation and cartilage formation were compromised upon treatment with both cytokines, resulting in altered messenger ribonucleic acid (mRNA) expression of collagen type 1A1 ( COL1A1 ), COL2A1 , and aggrecan ( ACAN ) as well as reduced proteoglycan content. Conclusions Individuals with elevated levels of cells with pro-inflammatory properties maintain these in the final PRP products. The concentration of pro-inflammatory cytokines strongly varies between PRP products. These observations may help to unravel the previously described heterogeneous response to PRP in OA therapy, especially as IFN-γ and TNF-α impacted primary chondrocyte proliferation and their characteristic gene expression profile. Both the individual’s immune profile and the concentration method appear to impact the final PRP product. Trial registration This study was prospectively registered in the Deutsches Register Klinischer Studien (DRKS) on 4 November 2021 (registration number DRKS00026175)
    corecore