119 research outputs found

    rpostgis: Linking R with a PostGIS Spatial Database

    Get PDF
    With the proliferation of sensors and the ease of data collection from online sources, large datasets have become the norm in many scientific disciplines, and efficient data storage, management, and retrival is imperative for large research projects. Relational databases provide a solution, but in order to be useful, must be able to be linked to analysis and visualization tools, such as R. Here, we present a package intended to facilitate integration of R with the open-source database software PostgreSQL, with a focus on its spatial extension, PostGIS. The package rpostgis (version 1.4.1) provides methods for spatial data handling (vector and raster) between PostGIS-enabled databases and R, methods for R data.frame s storage in PostgreSQL, and a set of convenient wrappers for common database procedures. We thus expect rpostgis to be useful for both (1) existing users of spatial data in R and/or PostGIS, and (2) R users who have yet to adopt relational databases for their projects

    ‘You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals

    Get PDF
    1. Impediments to animal movement are ubiquitous and vary widely in both scale and permeability. It is essential to understand how impediments alter ecological dynamics via their influence on animal behavioural strategies governing space use and, for anthropogenic features such as roads and fences, how to mitigate these effects to effectively manage species and landscapes.2. Here, we focused primarily on barriers to movement, which we define as features that cannot be circumnavigated but may be crossed. Responses to barriers will be influenced by the movement capabilities of the animal, its proximity to the barriers, and habitat preference. We developed a mechanistic modelling framework for simultaneously quantifying the permeability and proximity effects of barriers on habitat preference and movement.3. We used simulations based on our model to demonstrate how parameters on movement, habitat preference and barrier permeability can be estimated statistically. We then applied the model to a case study of road effects on wild mountain reindeer summer movements.4. This framework provided unbiased and precise parameter estimates across a range of strengths of preferences and barrier permeabilities. The quality of permeability estimates, however, was correlated with the number of times the barrier is crossed and the number of locations in proximity to barriers. In the case study we found that reindeer avoided areas near roads and that roads are semi-permeable barriers to movement. There was strong avoidance of roads extending up to c. 1 km for four of five animals, and having to cross roads reduced the probability of movement by 68·6% (range 3·5–99·5%).5. Human infrastructure has embedded within it the idea of networks: nodes connected by linear features such as roads, rail tracks, pipelines, fences and cables, many of which divide the landscape and limit animal movement. The unintended but potentially profound consequences of infrastructure on animals remain poorly understood. The rigorous framework for simultaneously quantifying movement, habitat preference and barrier permeability developed here begins to address this knowledge gap

    A decade of movement ecology

    Get PDF
    Movement is fundamental to life, shaping population dynamics, biodiversity patterns, and ecosystem structure. Recent advances in tracking technology have enabled fundamental questions about movement to be tackled, leading to the development of the movement ecology framework (MEF), considered a milestone in the field [1]. The MEF introduced an integrative theory of organismal movement, linking internal state, motion capacity and navigation capacity to external factors. Here, a decade later, we investigated the current state of research in the field. Using a text mining approach on >8000 peer-reviewed papers in movement ecology, we explored the main research topics, evaluated the impact of the MEF, and assessed changes in the use of technological devices, software and statistical methods. The number of publications has increased considerably and there have been major technological changes in the past decade (i.e.~increased use of GPS devices, accelerometers and video cameras, and a convergence towards R), yet we found that research focuses on the same questions, specifically, on the effect of environmental factors on movement and behavior. In practice, it appears that movement ecology research does not reflect the MEF. We call on researchers to transform the field from technology-driven to embrace interdisciplinary collaboration, in order to reveal key processes underlying movement (e.g.~navigation), as well as evolutionary, physiological and life-history consequences of particular strategies

    Selecting habitat to survive: The impact of road density on survival in a large carnivore

    Get PDF
    Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.© 2013 Basille et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Sex-specific effects of wind on the flight decisions of a sexually-dimorphic soaring bird

    Get PDF
    1. In a highly dynamic airspace, flying animals are predicted to adjust foraging behaviour to variable wind conditions to minimize movement costs. 2. Sexual size dimorphism is widespread in wild animal populations, and for large soaring birds which rely on favourable winds for energy‐efficient flight, differences in morphology, wing loading and associated flight capabilities may lead males and females to respond differently to wind. However, the interaction between wind and sex has not been comprehensively tested. 3. We investigated, in a large sexually dimorphic seabird which predominantly uses dynamic soaring flight, whether flight decisions are modulated to variation in winds over extended foraging trips, and whether males and females differ. 4. Using GPS loggers we tracked 385 incubation foraging trips of wandering albatrosses Diomedea exulans , for which males are c . 20% larger than females, from two major populations (Crozet and South Georgia). Hidden Markov models were used to characterize behavioural states—directed flight, area‐restricted search (ARS) and resting—and model the probability of transitioning between states in response to wind speed and relative direction, and sex. 5. Wind speed and relative direction were important predictors of state transitioning. Birds were much more likely to take off (i.e. switch from rest to flight) in stronger headwinds, and as wind speeds increased, to be in directed flight rather than ARS. Males from Crozet but not South Georgia experienced stronger winds than females, and males from both populations were more likely to take‐off in windier conditions. 6. Albatrosses appear to deploy an energy‐saving strategy by modulating taking‐off, their most energetically expensive behaviour, to favourable wind conditions. The behaviour of males, which have higher wing loading requiring faster speeds for gliding flight, was influenced to a greater degree by wind than females. As such, our results indicate that variation in flight performance drives sex differences in time–activity budgets and may lead the sexes to exploit regions with different wind regimes

    Analysis of Movement Recursions to Detect Reproductive Events and Estimate Their Fate in Central Place Foragers

    Get PDF
    Background Recursive movement patterns have been used to detect behavioral structure within individual movement trajectories in the context of foraging ecology, home-ranging behavior, and predator avoidance. Some animals exhibit movement recursions to locations that are tied to reproductive functions, including nests and dens; while existing literature recognizes that, no method is currently available to explicitly target different types of revisited locations. Moreover, the temporal persistence of recursive movements to a breeding location can carry information regarding the fate of breeding attempts, but it has never been used as a metric to quantify recursive movement patterns. Here, we introduce a method to locate breeding attempts and estimate their fate from GPS-tracking data of central place foragers. We tested the performance of our method in three bird species differing in breeding ecology (wood stork (Mycteria americana), lesser kestrel (Falco naumanni), Mediterranean gull (Ichthyaetus melanocephalus)) and implemented it in the R package ‘nestR’. Methods We identified breeding sites based on the analysis of recursive movements within individual tracks. Using trajectories with known breeding attempts, we estimated a set of species-specific criteria for the identification of nest sites, which we further validated using non-reproductive individuals as controls. We then estimated individual nest survival as a binary measure of reproductive fate (success, corresponding to fledging of at least one chick, or failure) from nest-site revisitation histories during breeding attempts, using a Bayesian hierarchical modeling approach that accounted for temporally variable revisitation patterns, probability of visit detection, and missing data. Results Across the three species, positive predictive value of the nest-site detection algorithm varied between 87 and 100% and sensitivity between 88 and 92%, and we correctly estimated the fate of 86–100% breeding attempts. Conclusions By providing a method to formally distinguish among revisited locations that serve different ecological functions and introducing a probabilistic framework to quantify temporal persistence of movement recursions, we demonstrated how the analysis of recursive movement patterns can be applied to estimate reproduction in central place foragers. Beyond avian species, the principles of our method can be applied to other central place foraging breeders such as denning mammals. Our method estimates a component of individual fitness from movement data and will help bridge the gap between movement behavior, environmental factors, and their fitness consequences

    Navigating through the r packages for movement

    Get PDF
    Case No. 900052-CA Category No. 14b APPEAL FROM AN ORDER OF SUMMARY JUDGMENT AND DISMISSAL OF COMPLAINT WITH PREJUDICE OF THE SECOND JUDICIAL DISTRICT COURT FOR DAVIS COUNTY, STATE OF UTAH JUDGE DOUGLAS L. CORNABY REPLY BRIEF OF APPELLANT

    Recent trends in movement ecology of animals and human mobility

    Get PDF
    Movement is fundamental to life, shaping population dynamics, biodiversity patterns, and ecosystem structure. In 2008, the movement ecology framework (MEF Nathan et al. in PNAS 105(49):19052–19059, 2008) introduced an integrative theory of organismal movement—linking internal state, motion capacity, and navigation capacity to external factors—which has been recognized as a milestone in the field. Since then, the study of movement experienced a technological boom, which provided massive quantities of tracking data of both animal and human movement globally and at ever finer spatio-temporal resolutions. In this work, we provide a quantitative assessment of the state of research within the MEF, focusing on animal movement, including humans and invertebrates, and excluding movement of plants and microorganisms. Using a text mining approach, we digitally scanned the contents of [Formula: see text] papers from 2009 to 2018 available online, identified tools and methods used, and assessed linkages between all components of the MEF. Over the past decade, the publication rate has increased considerably, along with major technological changes, such as an increased use of GPS devices and accelerometers and a majority of studies now using the R software environment for statistical computing. However, animal movement research still largely focuses on the effect of environmental factors on movement, with motion and navigation continuing to receive little attention. A search of topics based on words featured in abstracts revealed a clustering of papers among marine and terrestrial realms, as well as applications and methods across taxa. We discuss the potential for technological and methodological advances in the field to lead to more integrated and interdisciplinary research and an increased exploration of key movement processes such as navigation, as well as the evolutionary, physiological, and life-history consequences of movement

    Aquatic birds have middle ears adapted to amphibious lifestyles

    Get PDF
    Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing

    Uniting statistical and individual-based approaches for animal movement modelling

    Get PDF
    <div><p>The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.</p></div
    corecore