171 research outputs found

    Gravitational lensing effects of supermassive black holes in cluster environments

    Full text link
    This study explores the gravitational lensing effects of supermassive black holes (SMBHs) in galaxy clusters. While the presence of central SMBHs in galaxies is firmly established, recent work from high-resolution simulations predict the existence of an additional population of wandering SMBHs. Though the masses of these SMBHs are a minor perturbation on the larger scale and individual galaxy scale dark matter components in the cluster, they can impact statistical lensing properties and individual lensed image configurations. Probing for these potentially observable signatures, we find that SMBHs imprint detectable signatures in rare, higher-order strong lensing image configurations although they do not manifest any statistically significant detectable evidence in either the magnification distribution or the integrated shear profile. Investigating specific lensed image geometries, we report that a massive, near point-like, potential of an SMBH causes the following detectable effects: (i) image splitting leading to the generation of extra images; (ii) positional and magnification asymmetries in multiply imaged systems; and (iii) the apparent disappearance of a lensed counter-image. Of these, image splitting inside the cluster tangential critical curve, is the most prevalent notable observational signature. We demonstrate these possibilities in two cases of observed giant arcs in SGASJ003341.5+024217SGAS\,J003341.5+024217 and RXJ1347.51145RX\,J1347.5-1145, wherein specific image configurations seen can be reproduced with SMBHs. Future observations with high-resolution instrumentation (e.g. MAVIS-Very Large Telescope, MICADO-Extremely Large Telescope, and the upgraded ngVLA, along with data from the \textit{Euclid} \& \textit{Nancy Grace Roman} Space Telescopes and the Rubin LSST Observatory are likely to allow us to probe these unique yet rare SMBHs lensing signatures.Comment: 12 pages, 12 figures, submitted to MNRAS. For associated online animation, see https://sites.google.com/view/guillaume-mahler-astronomer/paper-animatio

    The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827

    Get PDF
    Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally bright elliptical galaxies within a core of radius 10kpc. Such corrugation of the stellar distribution is very rare, and suggests recent formation by several simultaneous mergers. We map the distribution of associated dark matter, using new Hubble Space Telescope imaging and VLT/MUSE integral field spectroscopy of a gravitationally lensed system threaded through the cluster core. We find that each of the central galaxies retains a dark matter halo, but that (at least) one of these is spatially offset from its stars. The best-constrained offset is 1.62+/-0.48kpc, where the 68% confidence limit includes both statistical error and systematic biases in mass modelling. Such offsets are not seen in field galaxies, but are predicted during the long infall to a cluster, if dark matter self-interactions generate an extra drag force. With such a small physical separation, it is difficult to definitively rule out astrophysical effects operating exclusively in dense cluster core environments - but if interpreted solely as evidence for self-interacting dark matter, this offset implies a cross-section sigma/m=(1.7+/-0.7)x10^{-4}cm^2/g x (t/10^9yrs)^{-2}, where t is the infall duration.Comment: 15 pages, 9 figure

    Discovery of Strongly-lensed Gravitational Waves - Implications for the LSST Observing Strategy

    Full text link
    LSST's wide-field of view and sensitivity will revolutionize studies of the transient sky by finding extraordinary numbers of new transients every night. The recent discovery of a kilonova counterpart to LIGO/Virgo's first detection of gravitational waves (GWs) from a double neutron star (NS-NS) merger also creates an exciting opportunity for LSST to offer a Target of Opportunity (ToO) mode of observing. We have been exploring the possibility of detecting strongly lensed GWs, that would enable new tests of GR, extend multi-messenger astronomy out to z1z\gtrsim1, and deliver a new class of sub-millisecond precision time-delay constraints on lens mass distributions. We forecast that the rate of detection of lensed NS-NS mergers in the 2020s will be 0.1\sim0.1 per Earth year, that the typical source will be at z2z\simeq2, and that the multiply-imaged kilonova counterpart will have a magnitude of AB25.4{\rm AB}\simeq25.4 in g/r/ig/r/i-band filters - i.e. fainter than the sensitivity of a single LSST WFD visit. We therefore advocate (1) creating a flexible and efficient Target of Opportunity programme within the LSST observing strategy that is capable of discovering sources fainter than single-visit depth, and (2) surveying the entire observable extragalactic sky as rapidly as possible in the WFD survey. The latter will enable a very broad range of early science that relies on wide survey area for detection of large samples of objects and/or maximizing the fraction of sky over which reference imaging is available. For example, it will enable prompt discovery of a uniform and all-sky sample of galaxy/group/cluster-scale lenses that will underpin LSST strong-lensing science. This white paper complements submissions from DESC, SLSC, and TVSSC, that discuss kilonova, GW, and strong lensing.Comment: A white paper on the LSST Cadence; submitted in November 2018; 10 page

    Galaxy–galaxy lensing in the outskirts of CLASH clusters: constraints on local shear and testing mass–luminosity scaling relation

    Get PDF
    We present a selection of 24 candidate galaxy–galaxy lensing (GGL) identified from Hubble images in the outskirts of the massive galaxy clusters from the Cluster Lensing And Supernova survey with Hubble (CLASH) . These GGLs provide insights into the mass distributions at larger scales than the strong-lensing region in the cluster cores. We built parametric mass models for three of these GGLs showing simple lensing configurations, in order to assess the properties of their lens and its environment. We show that the local shear estimated from the GGLs traces the gravitational potential of the clusters at a radial distance of 1–2 arcmin, allowing us to derive their velocity dispersion. We also find a good agreement between the strength of the shear measured at the GGL positions through strong-lensing modelling and the value derived independently from a weak-lensing analysis of the background sources. Overall, we show the advantages of using single GGL events in the outskirts of clusters to robustly constrain the local shear, even when only photometric redshift estimates are known for the source. We argue that the mass–luminosity scaling relation of cluster members can be tested by modelling the GGLs found around them, and show that the mass parameters can vary up to ∼30 per cent between the cluster and GGL models assuming this scaling relation

    The galaxy-galaxy strong lensing cross section and the internal distribution of matter in {\Lambda}CDM substructure

    Full text link
    Strong gravitational lensing offers a powerful probe of the detailed distribution of matter in lenses, while magnifying and bringing faint background sources into view. Observed strong lensing by massive galaxy clusters, which are often in complex dynamical states, has also been used to map their dark matter substructures on smaller scales. Deep high resolution imaging has revealed the presence of strong lensing events associated with these substructures, namely galaxy-scale sub-halos. However, an inventory of these observed galaxy-galaxy strong lensing (GGSL) events is noted to be discrepant with state-of-the-art {\Lambda}CDM simulations. Cluster sub-halos appear to be over-concentrated compared to their simulated counterparts yielding an order of magnitude higher value of GGSL. In this paper, we explore the possibility of resolving this observed discrepancy by redistributing the mass within observed cluster sub-halos in ways that are consistent within the {\Lambda}CDM paradigm of structure formation. Lensing mass reconstructions from data provide constraints on the mass enclosed within apertures and are agnostic to the detailed mass profile within them. Therefore, as the detailed density profile within cluster sub-halos currently remains unconstrained by data, we are afforded the freedom to redistribute the enclosed mass. We investigate if rearranging the mass to a more centrally concentrated density profile helps alleviate the GGSL discrepancy. We report that refitting cluster sub-halos to the ubiquitous {\Lambda}CDM-motivated Navarro-Frenk-White profile, and further modifying them to include significant baryonic components, does not resolve this tension. A resolution to this persisting GGSL discrepancy may require more careful exploration of alternative dark matter models.Comment: 20 pages, 5 figure

    The behaviour of dark matter associated with four bright cluster galaxies in the 10kpc core of Abell 3827

    Get PDF
    Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally bright elliptical galaxies within a core of radius 10kpc. Such corrugation of the stellar distribution is very rare, and suggests recent formation by several simultaneous mergers. We map the distribution of associated dark matter, using new Hubble Space Telescope imaging andVery Large Telescope/Multi-Unit Spectroscopic Explorer integral field spectroscopy of a gravitationally lensed system threaded through the cluster core. We find that each of the central galaxies retains a dark matter halo, but that (at least) one of these is spatially offset from its stars. The best-constrained offset is 1.620.49+0.471.62^{+0.47}_{-0.49}kpc, where the 68 per cent confidence limit includes both statistical error and systematic biases in mass modelling. Such offsets are not seen in field galaxies, but are predicted during the long infall to a cluster, if dark matter self-interactions generate an extra drag force. With such a small physical separation, it is difficult to definitively rule out astrophysical effects operating exclusively in dense cluster core environments - but if interpreted solely as evidence for self-interacting dark matter, this offset implies a cross-section σDM/m∼(1.7±0.7)×10−4cm2g−1×(tinfall/109 yr)−2, where tinfall is the infall duratio
    corecore