2,063 research outputs found

    Absorbing random-walk centrality: Theory and algorithms

    Full text link
    We study a new notion of graph centrality based on absorbing random walks. Given a graph G=(V,E)G=(V,E) and a set of query nodes QVQ\subseteq V, we aim to identify the kk most central nodes in GG with respect to QQ. Specifically, we consider central nodes to be absorbing for random walks that start at the query nodes QQ. The goal is to find the set of kk central nodes that minimizes the expected length of a random walk until absorption. The proposed measure, which we call kk absorbing random-walk centrality, favors diverse sets, as it is beneficial to place the kk absorbing nodes in different parts of the graph so as to "intercept" random walks that start from different query nodes. Although similar problem definitions have been considered in the literature, e.g., in information-retrieval settings where the goal is to diversify web-search results, in this paper we study the problem formally and prove some of its properties. We show that the problem is NP-hard, while the objective function is monotone and supermodular, implying that a greedy algorithm provides solutions with an approximation guarantee. On the other hand, the greedy algorithm involves expensive matrix operations that make it prohibitive to employ on large datasets. To confront this challenge, we develop more efficient algorithms based on spectral clustering and on personalized PageRank.Comment: 11 pages, 11 figures, short paper to appear at ICDM 201

    Nanoflare Activity in the Solar Chromosphere

    Get PDF
    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 10^9 pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. (2011) suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ~360s in a 10,000 km^2 area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.Comment: 7 pages, 3 figures, accepted into Ap

    Understanding Astrophysical Noise from Stellar Surface Magneto-Convection

    Full text link
    To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.Comment: 6 pages, 3 figures; presented at the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CoolStars18); to appear in the proceedings of Lowell Observatory (9-13 June 2014), edited by G. van Belle & H. Harris. Updated with correct y-axis units on righthand plot in figure

    Wireless Sensor Networks:A case study for Energy Efficient Environmental Monitoring

    No full text
    Energy efficiency is a key issue for wireless sensor networks, since sensors nodes can often be powered by non-renewable batteries. In this paper, we examine four MAC protocols in terms of energy consumption, throughput and energy efficiency. A forest fire detection application has been simulated using the well-known ns-2 in order to fully evaluate these protocols
    corecore