4,762 research outputs found

    Scaling laws to understand tidal dissipation in fluid planetary regions and stars I - Rotation, stratification and thermal diffusivity

    Get PDF
    Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Tidal dissipation inside the fluid layers of celestial bodies are intrinsically linked to the dynamics and the physical properties of the latter. This complex dependence must be characterized. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star/planet/moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. The sensitivity of the resulting possibly highly resonant dissipation frequency-spectra to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviors of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height and contrast with the non-resonant background of resonances are derived to quantify these variations. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role and demonstrate how it is now necessary to develop ab-initio modeling for tidal dissipation in celestial bodies.Comment: 24 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    Impact of the frequency dependence of tidal Q on the evolution of planetary systems

    Get PDF
    Context. Tidal dissipation in planets and in stars is one of the key physical mechanisms that drive the evolution of planetary systems. Aims. Tidal dissipation properties are intrisically linked to the internal structure and the rheology of studied celestial bodies. The resulting dependence of the dissipation upon the tidal frequency is strongly different in the cases of solids and fluids. Methods. We compute the tidal evolution of a two-body coplanar system, using the tidal quality factor's frequency-dependencies appropriate to rocks and to convective fluids. Results. The ensuing orbital dynamics comes out smooth or strongly erratic, dependent on how the tidal dissipation depends upon frequency. Conclusions. We demonstrate the strong impact of the internal structure and of the rheology of the central body on the orbital evolution of the tidal perturber. A smooth frequency-dependence of the tidal dissipation renders a smooth orbital evolution while a peaked dissipation can furnish erratic orbital behaviour.Comment: Accepted for publication as a letter in Astronomy And Astrophysic

    Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump: A hydrodynamic white hole

    Full text link
    We provide an experimental demonstration that the circular hydraulic jump represents a hydrodynamic white hole or gravitational fountain (the time-reverse of a black hole) by measuring the angle of the Mach cone created by an object in the "supersonic" inner flow region. We emphasise the general character of this gravitational analogy by showing theoretically that the white hole horizon constitutes a stationary and spatial saddle-node bifurcation within dynamical-systems theory. We also demonstrate that the inner region has a "superluminal" dispersion relation, i.e., that the group velocity of the surface waves increases with frequency, and discuss some possible consequences with respect to the robustness of Hawking radiation. Finally, we point out that our experiment shows a concrete example of a possible "transplanckian distortion" of black/white holes.Comment: 5 pages, 5 figures. New "transplanckian effect" described. Several clarifications, additional figures and references. Published versio

    Commercial Fishing Port Development in North Florida

    Get PDF
    The author has identified the following significant results. Seven major counties were examined: Escambia, Bay, Gulf, Franklin, Wakulla, Nassau, and Duval. Population and economic activity were reviewed, along with commercial fishing and port facilities. Recommendations for five northwest Florida counties were based on interpretation of aerial photographs, satellite imagery, an aerial survey site visit, and published data. Major needs in Pensacola included docking, ice supply, and net and engine repair services. Costs for additional docks, an ice plant, and gear storage were estimated at 3,658,600.PortusersinPanamaCityidentifiedadditionaldockingandgearstorageasprimaryneeds,alongwithgearrepairandamarinerailway.Estimatedcostsfordockandgearstoragewere3,658,600. Port users in Panama City identified additional docking and gear storage as primary needs, along with gear repair and a marine railway. Estimated costs for dock and gear storage were 2,860,000. Added docking, gear storage, and ice supply, as well as gear electronics and diesel repair were needed in Port St. Joe. Costs were calculated at 1,231,500.FranklinCountyhasthreeports(Apalachicola1,231,500. Franklin County has three ports (Apalachicola - 1,107,000 for docks and gear storage, Eastpoint - 420,000foradditionaldocks,andCarrabella420,000 for additional docks, and Carrabella - 2,824,100 for docks, gear storage, and ice plant)

    Diagnoses to unravel secular hydrodynamical processes in rotating main sequence stars

    Full text link
    (Abridged) We present a detailed analysis of the main physical processes responsible for the transport of angular momentum and chemical species in the radiative regions of rotating stars. We focus on cases where meridional circulation and shear-induced turbulence only are included in the simulations. Our analysis is based on a 2-D representation of the secular hydrodynamics, which is treated using expansions in spherical harmonics. We present a full reconstruction of the meridional circulation and of the associated fluctuations of temperature and mean molecular weight along with diagnosis for the transport of angular momentum, heat and chemicals. In the present paper these tools are used to validate the analysis of two main sequence stellar models of 1.5 and 20 Msun for which the hydrodynamics has been previously extensively studied in the literature. We obtain a clear visualization and a precise estimation of the different terms entering the angular momentum and heat transport equations in radiative zones. This enables us to corroborate the main results obtained over the past decade by Zahn, Maeder, and collaborators concerning the secular hydrodynamics of such objects. We focus on the meridional circulation driven by angular momentum losses and structural readjustements. We confirm quantitatively for the first time through detailed computations and separation of the various components that the advection of entropy by this circulation is very well balanced by the barotropic effects and the thermal relaxation during most of the main sequence evolution. This enables us to derive simplifications for the thermal relaxation on this phase. The meridional currents in turn advect heat and generate temperature fluctuations that induce differential rotation through thermal wind thus closing the transport loop.Comment: 16 pages, 18 figures. Accepted for publication in A&

    Comparative copro-diagnosis of Echinococcus multilocularis in experimentally infected foxes

    Get PDF
    Faecal samples from 15 foxes experimentally infected with Echinococcus multilocularis were examined until 90days post-infection (dpi) by microscopical identification of eggs isolated by flotation/sieving, by coproantigen-enzyme-linked immunosorbent assay (cELISA), by polymerase chain reaction (PCR) on DNA, respectively, isolated directly from the faecal samples (copro-DNA PCR) and from the eggs obtained by the flotation/sieving procedure (egg-DNA PCR). Based on egg counts, three periods of the infection were defined: pre-patent (2-29dpi), high patent (30-70dpi) and low patent periods (71-90dpi). Whereas all methods were highly sensitive with samples from the high patent period, cELISA was the most sensitive to detect pre-patent infections (63%). Samples from the low patent infections were positive in 77% by microscopy and in 80% by egg-DNA PCR, being significantly more sensitive than cELISA and copro-DNA PCR. The isolation of eggs from the faecal material proved to be more sensitive by the flotation/sieving procedure as compared to the classical concentration McMaster techniqu

    Effects of rotational mixing on the asteroseismic properties of solar-type stars

    Full text link
    The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting in a shift of the evolutionary track to the blue part of the HR diagram. These differences are related to changes of the chemical composition, because rotational mixing counteracts the effects of atomic diffusion leading to larger helium surface abundances for rotating models than for non-rotating ones. Higher values of the large frequency separation are then found for rotating models than for non-rotating ones at the same evolutionary stage, because the increase of the effective temperature leads to a smaller radius and hence to an increase of the stellar mean density. Rotational mixing also has a considerable impact on the structure and chemical composition of the central stellar layers by bringing fresh hydrogen fuel to the core, thereby enhancing the main-sequence lifetime. The increase of the central hydrogen abundance together with the change of the chemical profiles in the central layers result in a significant increase of the values of the small frequency separations and of the ratio of the small to large separations for models including shellular rotation. This increase is clearly seen for models with the same age sharing the same initial parameters except for the inclusion of rotation as well as for models with the same global stellar parameters and in particular the same location in the HR diagram. By computing rotating models of solar-type stars including the effects of a dynamo that possibly occurs in the radiative zone, we find that the efficiency of rotational mixing is strongly reduced when the effects of magnetic fields are taken into account, in contrast to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&

    Detecting individual gravity modes in the Sun: Chimera or reality?

    Full text link
    Over the past 15 years, our knowledge of the interior of the Sun has tremendously progressed by the use of helioseismic measurements. However, to go further in our understanding of the solar core, we need to measure gravity (g) modes. Thanks to the high quality of the Doppler-velocity signal measured by GOLF/SoHO, it has been possible to unveil the signature of the asymptotic properties of the solar g modes, thus obtaining a hint of the rotation rate in the core. However, the quest for the detection of individual g modes is not yet over. In this work, we apply the latest theoretical developments to guide our research using GOLF velocity time series. In contrary to what was thought till now, we are maybe starting to identify individual low-frequency g modes...Comment: Highlight of Astronomy (HoA) proceedings of the JD-11, IAU 2009. 2 pages, 1 figur

    Extinction Curves, Distances, and Clumpiness of Diffuse Interstellar Dust Clouds

    Get PDF
    We present CCD photometry in UBVRI of several thousand Galactic field stars in four large (>1 degree^2) regions centered on diffuse interstellar dust clouds, commonly referred to as ``cirrus'' clouds (with optical depth A_V less than unity). Our goal in studying these stars is to investigate the properties of the cirrus clouds. A comparison of the observed stellar surface density between on-cloud and off-cloud regions as a function of apparent magnitude in each of the five bands effectively yields a measure of the extinction through each cloud. For two of the cirrus clouds, this method is used to derive UBVRI star counts-based extinction curves, and U-band counts are used to place constraints on the cloud distance. The color distribution of stars and their location in (U-B, B-V) and (B-V, V-I) color-color space are analyzed in order to determine the amount of selective extinction (reddening) caused by the cirrus. The color excesses, A_lambda-A_V, derived from stellar color histogram offsets for the four clouds, are better fit by a reddening law that rises steeply towards short wavelengths [R_V==A_V/E(B-V)<=2] than by the standard law (R_V=3.1). This may be indicative of a higher-than-average abundance of small dust grains relative to larger grains in diffuse cirrus clouds. The shape of the counts-based effective extinction curve and a comparison of different estimates of the dust optical depth (extinction optical depth derived from background star counts/colors; emission optical depth derived from far infrared measurements), are used to measure the degree of clumpiness in clouds. The set of techniques explored in this paper can be readily adapted to the Sloan Digital Sky Survey data set in order to carry out a systematic, large-scale study of cirrus clouds.Comment: 22 pages, 13 figures (postscript, gif, jpg). Accepted for publication in the Astronomical Journal, scheduled for the May 1999 issue. Full resolution postscript versions of all figures are available at http://www.ucolick.org/~arpad

    ISO spectroscopy of compact HII regions in the Galaxy. II Ionization and elemental abundances

    Get PDF
    Based on the ISO spectral catalogue of compact HII regions by Peeters et al. (2001), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 HII regions located at galactocentric distances between Rgal = 0 and 15 kpc. The SWS HI recombination lines between 2 and 8 mum are used to estimate the extinction law at these wavelengths for 14 HII regions. An extinction in the K band between 0 and \sim 3 mag. has been derived. The fine-structure lines of N, O, Ne, S and Ar are detected in most of the sources. Most of these elements are observed in two different ionization stages probing a range in ionization potential up to 41 eV. The ISO data, by itself or combined with radio data taken from the literature, is used to derive the elemental abundances relative to hydrogen. The present data thus allow us to describe for each source its elemental abundance, its state of ionization and to constrain the properties of the ionizing star(s).Comment: Accepted in Astronomy and Astrophysics, 22 pages, 20 figures, 9 table
    corecore