8,210 research outputs found

    The protein import machinery of chloroplasts

    Get PDF

    The 2D dynamics of radiative zones of low-mass stars

    Full text link
    In the context of secular evolution, we describe the dynamics of the radiative core of low-mass stars to understand the internal transport of angular momentum in such stars which results in a solid rotation in the Sun from 0.7R_sun to 0.2R_sun and a weak radial core-envelope differential rotation in solar-type stars. This study requires at least a 2D description to capture the latitudinal variations of the differential rotation. We build 2D numerical models of a radiative core on the top of which we impose a latitudinal shear so as to reproduce a cylindrical differential rotation in a convective envelope. We perform a systematic study over the Rossby number measuring the latitudinal differential rotation at the radiative-convective interface. The imposed shear generates a geostrophic flow implying a cylindrical differential rotation. When compared to the baroclinic flow that arises from the stable stratification, we find that the geostrophic flow is dominant when the Rossby number is high enough with a cylindrical rotation profile. For low Rossby numbers, the baroclinic solution dominates with a quasi-shellular rotation profile. Using scaling laws from 3D simulations, we show that slow rotators are expected to have a cylindrical rotation profile. Fast rotators may have a shellular profile at the beginning of the main-sequence in stellar radiative zones. This study enables us to predict different types of differential rotation and emphasizes the need of a new generation of 2D rotating stellar models developed in synergy with 3D numerical simulations. The shear induced by a surface convective zone has a strong impact on the dynamics of the underlying radiative zone in low-mass stars. But, it cannot produce a flat internal rotation profile in a solar configuration calling for additional processes for the transport of angular momentum in both radial and latitudinal directions.Comment: 12 pages, 7 figures, accepted for publication in A&

    Tidal inertial waves in the differentially rotating convective envelopes of low-mass stars - I. Free oscillation modes

    Full text link
    Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convection can sustain differential rotation in their envelope, with an equatorial acceleration (as in the Sun) or deceleration, which can modify the waves' propagation properties. We explore in this first paper the general propagation properties of free linear inertial waves in a differentially rotating homogeneous fluid inside a spherical shell. We assume that the angular velocity background flow depends on the latitudinal coordinate only, close to what is expected in the external convective envelope of low-mass stars. We use i) an analytical approach in the inviscid case to get the dispersion relation, from which we compute the characteristic trajectories along which energy propagates. This allows us to study the existence of attractor cycles and infer the different families of inertial modes; ii) high-resolution numerical calculations based on a spectral method for the viscous problem. We find that modes that propagate in the whole shell (D modes) behave the same way as with solid-body rotation. However, another family of inertial modes exists (DT modes), which can propagate only in a restricted part of the convective zone. Our study shows that they are less common than D modes and that the characteristic rays and shear layers often focus towards a wedge - or point-like attractor. More importantly, we find that for non-axisymmetric oscillation modes, shear layers may cross a corotation resonance with a local accumulation of kinetic energy. Their damping rate scales very differently from what we obtain for standard D modes and we show an example where it is independent of viscosity (Ekman number) in the astrophysical regime in which it is small.Comment: 17 pages, 15 figures, accepted for publication in A&

    Low-voltage organic transistors and inverters with ultra-thin fluoropolymer gate dielectric

    Full text link
    We report on the simple fabrication of hysteresis-free and electrically stable organic field-effect transistors (OFETs) and inverters operating at voltages <1-2 V, enabled by the almost trap-free interface between the organic semiconductor and an ultra-thin (<20 nm) and highly insulating single-layer fluoropolymer gate dielectric (Cytop). OFETs with PTCDI-C13 (N,N'-ditridecylperylene-3,4,9,10-tetracarboxylicdiimide) as semiconductor exhibit outstanding transistor characteristics: very low threshold voltage (0.2V), onset at 0V, steep subthreshold swing (0.1-0.2 V/decade), no hysteresis and excellent stability against gate bias stress. It is gratifying to notice that such small OFET operating voltages can be achieved with the relatively simple processing techniques employed in this study.Comment: Accepted for publication in Applied Physics Letter

    Understanding tidal dissipation in gaseous giant planets from their core to their surface

    Full text link
    Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this work, we compute separately the contributions of the potential dense rocky/icy core and of the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We demonstrate that in general both mechanisms must be taken into account.Comment: 2 pages, 2 figures, CoRoT Symposium 3 / Kepler KASC-7 joint meeting, Toulouse, July 2014; To be published by EPJ Web of Conference

    Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    Get PDF
    The detection of mixed modes in subgiants and red giants by the CoRoT and \emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 MM_{\odot} at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.Comment: Accepted in A&A, 7 pages, 8 figure
    corecore