190 research outputs found

    Arctic in Rapid Transition (ART) : science plan

    Get PDF
    The Arctic is undergoing rapid transformations that have brought the Arctic Ocean to the top of international political agendas. Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary pan-Arctic program to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity. The goal of ART is to develop priorities for Arctic marine science over the next decade. Three overarching questions form the basis of the ART science plan: (1) How were past transitions in sea ice connected to energy flows, elemental cycling, biological diversity and productivity, and how do these compare to present and projected shifts? (2) How will biogeochemical cycling respond to transitions in terrestrial, gateway and shelf-to-basin fluxes? (3) How do Arctic Ocean organisms and ecosystems respond to environmental transitions including temperature, stratification, ice conditions, and pH? The integrated approach developed to answer the ART key scientific questions comprises: (a) process studies and observations to reveal mechanisms, (b) the establishment of links to existing monitoring programs, (c) the evaluation of geological records to extend time-series, and (d) the improvement of our modeling capabilities of climate-induced transitions. In order to develop an implementation plan for the ART initiative, an international and interdisciplinary workshop is currently planned to take place in Winnipeg, Canada in October 2010

    On the Location and Composition of the Dust in the MCG-6-30-15 Warm Absorber

    Full text link
    Hubble Space Telescope images of MCG-6-30-15 show a dust lane crossing the galaxy just below the nucleus. In this paper, we argue that this dust lane is responsible for the observed reddening of the nuclear emission and the Fe I edge hinted at in the Chandra spectrum of MCG-6-30-15. We further suggest that the gas within the dust lane can comprise much of the low ionization component (i.e., the one contributing the O VII edge) of the observed warm absorber. Moreover, placing the warm absorbing material at such distances (hundreds of pc) can account for the small outflow velocities of the low ionization absorption lines as well as the constancy of the O VIII edge. Photoionization models of a dusty interstellar gas cloud (with a column appropriate for the reddening toward MCG-6-30-15) using a toy Seyfert 1 spectral energy distribution show that it is possible to obtain a significant O VII edge (\tau~0.2) if the material is ~150 pc from the ionizing source. For MCG-6-30-15, such a distance is consistent with the observed dust lane. The current data on MCG-6-30-15 is unable to constrain the dust composition within the warm absorber. Astronomical silicate is a viable candidate, but there are indications of a very low O abundance in the dust, which is inconsistent with a silicate origin. If true, this may indicate that there were repeated cycles of grain destruction and growth from shocks in the interstellar medium of MCG-6-30-15. Pure iron grains are an unlikely dust constituent due to the limit on their abundance in the Galaxy, yet they cannot be ruled out. The high column densities inferred from the highly ionized zone of the warm absorber implies that this gas is dust-free.Comment: 7 pages, 3 Figures, A&A accepte

    RACE-OC Project: Rotation and variability in the epsilon Chamaeleontis, Octans, and Argus stellar associations

    Full text link
    We aim at determining the rotational and magnetic-related activity properties of stars at different stages of evolution. We focus our attention primarily on members of young stellar associations of known ages. Specifically, we extend our previous analysis in Paper I (Messina et al. 2010, A&A 520, A15) to 3 additional young stellar associations beyond 100 pc and with ages in the range 6-40 Myr: epsilon Chamaeleontis (~6 Myr), Octans (~20 Myr), and Argus (~40 Myr). Additional rotational data of eta Chamaeleontis and IC2391 clusters are also considered. Rotational periods were determined from photometric time-series data obtained by the All Sky Automated Survey (ASAS) and the Wide Angle Search for Planets (SuperWASP) archives. With the present study we have completed the analysis of the rotational properties of the late-type members of all known young loose associations in the solar neighborhood. Considering also the results of Paper I, we have derived the rotation periods of 241 targets: 171 confirmed, 44 likely, 26 uncertain. The period of the remaining 50 stars known to be part of loose associations still remains unknown. This rotation period catalogue, and specifically the new information presented in this paper at ~6, 20, and 40 Myr, contributes significantly to a better observational description of the angular momentum evolution of young stars.Comment: Accepted by Astronomy & Astrophysics. Onlines figures will be available at CD

    XMM-Newton observation of the bright Seyfert 1 galaxy, MCG+8-11-11

    Full text link
    We report on the XMM-Newton observation of the bright Seyfert 1 galaxy, MCG+8-11-11. Data from the EPIC/p-n camera, the Reflection Gratings Spectrometers (RGS) and the Optical Monitor (OM) have been analyzed. The p-n spectrum is well fitted by a power law, a spectrally unresolved Fe Kalpha line, a Compton reflection component (whose large value, when compared to the iron line equivalent width, suggests iron underabundance), and absorption by warm material. Absorption lines are apparent in the RGS spectra, but their identification is uncertain and would require large matter velocities. The UV fluxes measured by the OM are well above the extrapolation of the X-ray spectrum, indicating the presence of a UV bump.Comment: 7 pages. Accepted for publication in Astronomy & Astrophysic

    Observational evidence for gravitationally trapped massive axion(-like) particles

    Full text link
    Unexpected astrophysical observations can be explained by gravitationally captured massive particles, which are produced inside the Sun or other Stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source. In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona - chromosphere transition region is suggestive for an omnipresent irradiation of the Sun. The same scenario fits other astrophysical X-ray observations. The radiative decay of a population of such elusive particles mimics a hot gas. X-ray observatories, with an unrivalled sensitivity below ~10 keV, can search for such particles. The elongation angle relative to the Sun is the relevant new parameter.Comment: 35 pages, LaTeX, 9 figures. Accepted by Astroparticle Physic
    corecore