979 research outputs found
The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes
Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a "limited offer" game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing
Constraining the fundamental parameters of the O-type binary CPD-41degr7733
Using a set of high-resolution spectra, we studied the physical and orbital
properties of the O-type binary CPD-41 7733, located in the core of \ngc. We
report the unambiguous detection of the secondary spectral signature and we
derive the first SB2 orbital solution of the system. The period is 5.6815 +/-
0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably
consists of stars of spectral types O8.5 and B3. As for other objects in the
cluster, we observe discrepant luminosity classifications while using
spectroscopic or brightness criteria. Still, the present analysis suggests that
both components display physical parameters close to those of typical O8.5 and
B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during
six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no
significant variability between the different pointings, nor within the
individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a
three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4
keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction,
is observed. The emission of CPD-41 7733 is thus very representative of typical
O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure
Discovery of kilogauss magnetic fields in three DA white dwarfs
We have detected longitudinal magnetic fields between 2 and 4 kG in three (WD
0446790, WD 1105048, WD 2359434) out of a sample of 12 normal DA white
dwarfs by using optical spectropolarimetry done with the VLT Antu 8 m telescope
equipped with FORS1. With the exception of 40 Eri B (4 kG) these are the first
positive detections of magnetic fields in white dwarfs below 30 kG. Although
suspected, it was not clear whether a significant fraction of white dwarfs
contain magnetic fields at this level. These fields may be explained as fossil
relics from magnetic fields in the main-sequence progenitors considerably
enhanced by magnetic flux conservation during the shrinkage of the core. A
detection rate of 25 % (3/12) may indicate now for the first time that a
substantial fraction of white dwarfs have a weak magnetic field. This result,
if confirmed by future observations, would form a cornerstone for our
understanding on the evolution of stellar magnetic fields.
Keywords: stars: white dwarfs - stars: magnetic fields - stars: individual:
WD0446-790, WD1105-048, WD2359-434Comment: 15 pages, 7 figures, Astronomy and Astrophysics, in pres
The massive star binary fraction in young open clusters - II. NGC 6611 (Eagle Nebula)
Based on a set of over 100 medium- to high-resolution optical spectra
collected from 2003 to 2009, we investigate the properties of the O-type star
population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more
extended data set than previously available, we revise the spectral
classification and multiplicity status of the nine O-type stars in our sample.
We confirm two suspected binaries and derive the first SB2 orbital solutions
for two systems. We further report that two other objects are displaying a
composite spectrum, suggesting possible long-period binaries. Our analysis is
supported by a set of Monte-Carlo simulations, allowing us to estimate the
detection biases of our campaign and showing that the latter do not affect our
conclusions. The absolute minimal binary fraction in our sample is f_min=0.44
but could be as high as 0.67 if all the binary candidates are confirmed. As in
NGC6231 (see Paper I), up to 75% of the O star population in NGC6611 are found
in an O+OB system, thus implicitly excluding random pairing from a classical
IMF as a process to describe the companion association in massive binaries. No
statistical difference could be further identified in the binary fraction,
mass-ratio and period distributions between NGC6231 and NGC6611, despite the
difference in age and environment of the two clusters.Comment: Accepted by MNRAS; 15 pages, 17 fi
First results of the CROME experiment
It is expected that a radio signal in the microwave range is produced in the
atmosphere due to molecular bremsstrahlung initiated by extensive air showers.
The CROME (Cosmic-Ray Observation via Microwave Emission) experiment was built
to search for this microwave signal. Radiation from the atmosphere is monitored
in the extended C band (3.4--4.2 GHz) in coincidence with showers detected by
the KASCADE-Grande experiment. The detector setup consists of several parabolic
antennas and fast read-out electronics. The sensitivity of the detector has
been measured with different methods. First results after half a year of data
taking are presented.Comment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
The Evolution of Blue Stragglers Formed Via Stellar Collisions
We have used the results of recent smoothed particle hydrodynamic simulations
of colliding stars to create models appropriate for input into a stellar
evolution code. In evolving these models, we find that little or no surface
convection occurs, precluding angular momentum loss via a magnetically-driven
stellar wind as a viable mechanism for slowing rapidly rotating blue stragglers
which have been formed by collisions. Angular momentum transfer to either a
circumstellar disk (possibly collisional ejecta) or a nearby companion are
plausible mechanisms for explaining the observed low rotation velocities of
blue stragglers. Under the assumption that the blue stragglers seen in NGC 6397
and 47 Tuc have been created solely by collisions, we find that the majority of
these blue stragglers cannot have been highly mixed by convection or meridional
circulation currents at anytime during their evolution. Also, on the basis of
the agreement between the predictions of our non-rotating models and the
observed blue straggler distribution, the evolution of blue stragglers is
apparently not dominated by the effects of rotation.Comment: 36 pages, including 1 table and 7 postscript figures (LaTeX2e). Also
avaliable at http://astrowww.phys.uvic.ca/~ouellet/ . Accepted for
publication in A
Composition Mixing during Blue Straggler Formation and Evolution
We use smoothed-particle hydrodynamics to examine differences between direct
collisions of single stars and binary star mergers in their roles as possible
blue straggler star formation mechanisms. We find in all cases that core helium
in the progenitor stars is largely retained in the core of the remnant, almost
independent of the type of interaction or the central concentration of the
progenitor stars.
We have also modelled the subsequent evolution of the hydrostatic remnants,
including mass loss and energy input from the hydrodynamical interaction. The
combination of the hydrodynamical and hydrostatic models enables us to predict
that little mixing will occur during the merger of two globular cluster stars
of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque
(1995), we find that neither completely mixed nor unmixed models can match the
absolute colors of observed blue stragglers in NGC 6397 at all luminosity
levels. We also find that the color distribution is probably the crucial test
for explanations of BSS formation - if stellar collisions or mergers are the
correct mechanisms, a large fraction of the lifetime of the straggler must be
spent away from the main sequence. This constraint appears to rule out the
possibility of completely mixed models. For NGC 6397, unmixed models predict
blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely
mixed models predict a range from about 0.6 to 4 Gyr.Comment: AASTeX, 28 pg., accepted for ApJ, also available at
http://ucowww.ucsc.edu/~erics/bspaper.htm
Characterization of anomalous Zeeman patterns in complex atomic spectra
The modeling of complex atomic spectra is a difficult task, due to the huge
number of levels and lines involved. In the presence of a magnetic field, the
computation becomes even more difficult. The anomalous Zeeman pattern is a
superposition of many absorption or emission profiles with different Zeeman
relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a
statistical approach to study the effect of a magnetic field on the broadening
of spectral lines and transition arrays in atomic spectra. In this model, the
sigma and pi profiles are described using the moments of the Zeeman components,
which depend on quantum numbers and Land\'{e} factors. A graphical calculation
of these moments, together with a statistical modeling of Zeeman profiles as
expansions in terms of Hermite polynomials are presented. It is shown that the
procedure is more efficient, in terms of convergence and validity range, than
the Taylor-series expansion in powers of the magnetic field which was suggested
in the past. Finally, a simple approximate method to estimate the contribution
of a magnetic field to the width of transition arrays is proposed. It relies on
our recently published recursive technique for the numbering of LS-terms of an
arbitrary configuration.Comment: submitted to Physical Review
Early-type stars in the young open cluster NGC 2244 and in the Mon OB2 association I. The multiplicity of O-type stars
Aims. We present the results obtained from a long-term spectroscopic campaign
devoted to the multiplicity of O-type stars in the young open cluster NGC2244
and in the Mon OB2 association. Methods. Our spectroscopic monitoring was
performed over several years, allowing us to probe different time-scales. For
each star, several spectral diagnostic tools are applied, in order to search
for line shifts and profile variations. We also measure the projected
rotational velocity and revisit the spectral classification. Results. In our
sample, several stars were previously considered as spectroscopic binaries,
though only a few scattered observations were available. Our results now reveal
a more complex situation. Our study identifies two new spectroscopic binaries
(HD46149 in NGC2244 and HD46573 in MonOB2). The first object is a long-period
double-lined spectroscopic binary, though the exact value of its period remains
uncertain and the second object is classified as an SB1 system with a period of
about 10.67 days but the time series of our observations do not enable us to
derive a unique orbital solution for this system. We also classify another star
as variable in radial velocity (HD46150) and we detect line profile variations
in two rapid rotators (HD46056 and HD46485). Conclusions. This spectroscopic
investigation places a firm lower limit (17%) on the binary fraction of O-stars
in NGC2244 and reveals the lack of short-period O+OB systems in this cluster.
In addition, a comparison of these new results with two other well-studied
clusters (NGC6231 and IC1805) puts forward possible hints of a relation between
stellar density and binarity, which could provide constraints on the theories
about the formation and early evolution of hot stars.Comment: 14 pages, 10 figures, 9 table
The Struve-Sahade effect in the optical spectra of O-type binaries I. Main-sequence systems
We present a spectroscopic analysis of four massive binary systems that are
known or are good candidates to display the Struve-Sahade effect (defined as
the apparent strengthening of the secondary spectrum of the binary when the
star is approaching, and the corresponding weakening of the lines when it is
receding).
We use high resolution optical spectra to determine new orbital solutions and
spectral types of HD 165052, HD 100213, HD 159176 and DH Cep. As good knowledge
of the fundamental parameters of the considered systems is necessary to examine
the Struve-Sahade effect. We then study equivalent width variations in the
lines of both components of these binaries during their orbital cycle.
In the case of these four systems, variations appear in the equivalent widths
of some lines during the orbital cycle, but the definition given above can any
longer be valid, since it is now clear that the effect modifies the primary
spectrum as much as the secondary spectrum. Furthermore, the lines affected,
and the way in which they are affected, depend on the considered system. For at
least two of them (HD 100213 and HD 159176) these variations probably reflect
the ellipsoidal variable nature of the system.Comment: 12 pages, 20 figures, in press A&
- …
