13 research outputs found

    New anti-infective coatings of medical implants.

    No full text
    Implantable devices are highly susceptible to infection and are therefore a major risk in surgery. The present work presents a novel strategy to prevent the formation of a biofilm on polytetrafluoroethylene (PTFE) grafts. PTFE grafts were coated with gentamicin and teicoplanin incorporated into different lipid-like carriers under aseptic conditions in a dipping process. Poly-d,l-lactic acid, tocopherol acetate, the diglyceride Softisan 649, and the triglyceride Dynasan 118 were used as drug carriers. The drug release kinetics, anti-infective characteristics, biocompatibility, and hemocompatibility of the coatings developed were studied. All coatings showed an initial drug burst, followed by a low continuous drug release over 96 h. The dimension of release kinetics depended on the carrier used. All coated prostheses reduced bacterial growth drastically over 24 h, even below pathologically relevant concentrations. Different cytotoxic levels could be observed, revealing tocopherol acetate as the most promising biocompatible carrier. A possible reason for the highly cytotoxic effect of Softisan 649 could be assessed by demonstrating incorporated lipids in the cell soma with Oil Red O staining. Tromboelastography studies, enzyme-linked immunosorbent assays, and an amidolytic substrate assay could confirm the hemocompatibility of individual coatings. The development of the biodegradable drug delivery systems described here and in vitro studies of those systems highlight the most important requirements for effective as well as compatible anti-infective coatings of PTFE grafts. Through continuous local release, high drug levels can be produced at only the targeted area and physiological bacterial proliferation can be completely inhibited, while biocompatibility as well as hemocompatibility can be ensured

    Augmentation of antibiotic activity by low-frequency electric and electromagnetic fields examining Staphylococcus aureus in broth media.

    No full text
    Systemic treatment of biomaterial-associated bacterial infections with high doses of antibiotics is an established therapeutic concept. The purpose of this in vitro study was to determine the influence of magnetic, electromagnetic, and electric fields on gentamicin-based, antibiotic therapy. It has been previously reported that these fields are successful in the treatment of bone healing and reducing osteitis in infected tibia-pseudarthroses. Four separate experimental setups were used to expose bacterial cultures of Staphylococcus aureus both in Mueller-Hinton broth (MHB) and on Mueller-Hinton agar (MHA), in the presence of gentamicin, to (1) a low-frequency magnetic field (MF) 20 Hz, 5 mT; (2) a low-frequency MF combined with an additional alternating electric field (MF + EF) 20 Hz, 5 mT, 470 mV/cm; (3) a sinusoidal alternating electric field (EF AC) 20 Hz, 470 mV/cm; and (4) a direct current electric field (EF DC) 588 mV/cm. No significant difference between samples and controls was detected on MHA. However, in MHB each of the four fields applied showed a significant growth reduction of planktonically grown Staphylococcus aureus in the presence of gentamicin between 32% and 91% within 24 h of the experiment. The best results were obtained by a direct current EF, decreasing colony-forming units (CFU)/ml more than 91%. The application of electromagnetic fields in the area of implant and bone infections could offer new perspectives in antibiotic treatment and antimicrobial chemotherapy
    corecore