4,947 research outputs found
A new cosmological tracker solution for Quintessence
In this paper we propose a quintessence model with the potential , which
asymptotic behavior corresponds to an inverse power-law potential at early
times and to an exponential one at late times. We demonstrate that this is a
tracker solution and that it could have driven the Universe into its current
inflationary stage. The exact solutions and the description for a complete
evolution of the Universe are also given. We compare such model with the
current cosmological observations.Comment: 13 pages REVTeX, 5 eps color figure
Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms
This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)
Beneficios en la microbiota intestinal después de la suplementación con inulina y la goma guar parcialmente hidrolizada: un ensayo clínico aleatorizado en mujeres con estreñimiento
Introduction: Prebiotics positively affect gut microbiota composition, thus improving gut function. These properties may be useful for the treatment of constipation.Objectives: This study assessed the tolerance and effectiveness of a prebiotic inulin/partially hydrolyzed guar gum mixture (I-PHGG) for the treatment of constipation in females, as well as its influence on the composition of intestinal microbiota and production of short chain fatty acids.Methods: Our study enrolled 60 constipated female health worker volunteers. Participants reported less than 3 bowel movements per week. Volunteers were randomized to treatment with prebiotic or placebo. Treatment consisted of 3 weeks supplementation with 15 g/d I-PHGG (fiber group) or maltodextrin (placebo group). Abdominal discomfort, flatulence, stool consistency, and bowel movements were evaluated by a recorded daily questionnaire and a weekly interview. Changes in fecal bacterial population and short chain fatty acids were assessed by real-time PCR and gas chromatography, respectively.Results: There was an increased frequency of weekly bowel movements and patient satisfaction in both the fiber and placebo groups with no significant differences. Total Clostridium sp significantly decreased in the fiber group (p = 0.046) and increased in the placebo group (p = 0.047). There were no changes in fecal short chain fatty acid profile.Conclusions: Consumption of I-PHGG produced clinical results comparable to placebo in constipated females, but had additional protective effects on gut rnicrobiota by decreasing the amount of pathological bacteria of the Clostridium genera.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ São Paulo, Fac Med, Sch Med, Dept Gastroenterol,Surg Gastroenterol Discipline, BR-01246903 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biociences, Santos, BrazilGANEP Nutr Humana, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biociences, Santos, BrazilFAPESP: 07/58600-2Web of Scienc
Planck-scale quintessence and the physics of structure formation
In a recent paper we considered the possibility of a scalar field providing
an explanation for the cosmic acceleration. Our model had the interesting
properties of attractor-like behavior and having its parameters of O(1) in
Planck units. Here we discuss the effect of the field on large scale structure
and CMB anisotropies. We show how some versions of our model inspired by
"brane" physics have novel features due to the fact that the scalar field has a
significant role over a wider range of redshifts than for typical "dark energy"
models. One of these features is the additional suppression of the formation of
large scale structure, as compared with cosmological constant models. In light
of the new pressures being placed on cosmological parameters (in particular
H_0) by CMB data, this added suppression allows our "brane" models to give
excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
Condições socioeconômicas e padrões alimentares de crianças de 4 a 11 anos: estudo SCAALA - Salvador/ Bahia
OBJETIVOS: identificar os padrões alimentares de crianças e sua associação com o nível socioeconômico das famílias. MÉTODOS: estudo transversal com 1260 crianças de 4 a 11 anos, residentes em Salvador-Bahia que incluiu aplicação de um Questionário de Frequência Alimentar semi-quantitativo. Os padrões alimentares foram identificados, empregando-se análise fatorial por componentes principais. O nível socioeconômico foi avaliado por meio de um indicador socioeconômico composto. Regressão logística multivariada foi empregada. RESULTADOS: identificaram-se quatro padrões que explicaram 45,9% da variabilidade dos dados de frequência alimentar. Crianças que pertencem ao nível socioeconômico mais alto têm 1,60 vezes mais chance (p<0,001) de apresentarem maior frequência de consumo de alimentos do padrão 1 (frutas, verduras, leguminosas, cereais e pescados) e 3,09 vezes mais chance (p<0,001) de apresentarem maior frequência de consumo dos alimentos do padrão 2 (leite/ derivados, catchup/ maionese/ mostarda e frango), quando se compara com aquele de crianças de nível socioeconômico mais baixo. Resultado inverso foi observado no padrão 4 (embutidos, ovos e carnes vermelhas); isto é, quanto maior o nível socioeconômico menor a chance da adoção desse padrão. Tendência similar foi notada para o padrão 3 (frituras, doces, salgadinhos, refrigerante/ suco artificial). CONCLUSÕES: padrões alimentares de crianças são dependentes das condições socioeconômicas das famílias e a adoção de itens alimentares mais saudáveis associa-se aos grupos de mais altos níveis socioeconômicos
General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology
The estimation of parameters characterizing dynamical processes is central to
science and technology. The estimation error changes with the number N of
resources employed in the experiment (which could quantify, for instance, the
number of probes or the probing energy). Typically, it scales as 1/N^(1/2).
Quantum strategies may improve the precision, for noiseless processes, by an
extra factor 1/N^(1/2). For noisy processes, it is not known in general if and
when this improvement can be achieved. Here we propose a general framework for
obtaining attainable and useful lower bounds for the ultimate limit of
precision in noisy systems. We apply this bound to lossy optical interferometry
and atomic spectroscopy in the presence of dephasing, showing that it captures
the main features of the transition from the 1/N to the 1/N^(1/2) behaviour as
N increases, independently of the initial state of the probes, and even with
use of adaptive feedback.Comment: Published in Nature Physics. This is the revised submitted version.
The supplementary material can be found at
http://www.nature.com/nphys/journal/v7/n5/extref/nphys1958-s1.pd
Phage inducible islands in the gram-positive cocci
The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
Modelling non-dust fluids in cosmology
Currently, most of the numerical simulations of structure formation use
Newtonian gravity. When modelling pressureless dark matter, or `dust', this
approach gives the correct results for scales much smaller than the
cosmological horizon, but for scenarios in which the fluid has pressure this is
no longer the case. In this article, we present the correspondence of
perturbations in Newtonian and cosmological perturbation theory, showing exact
mathematical equivalence for pressureless matter, and giving the relativistic
corrections for matter with pressure. As an example, we study the case of
scalar field dark matter which features non-zero pressure perturbations. We
discuss some problems which may arise when evolving the perturbations in this
model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3:
version to appear in JCA
BN domains included into carbon nanotubes: role of interface
We present a density functional theory study on the shape and arrangement of
small BN domains embedded into single-walled carbon nanotubes. We show a strong
tendency for the BN hexagons formation at the simultaneous inclusion of B and N
atoms within the walls of carbon nanotubes. The work emphasizes the importance
of a correct description of the BN-C frontier. We suggest that BN-C interface
will be formed preferentially with the participation of N-C bonds. Thus, we
propose a new way of stabilizing the small BN inclusions through the formation
of nitrogen terminated borders. The comparison between the obtained results and
the available experimental data on formation of BN plackets within the single
walled carbon nanotubes is presented. The mirror situation of inclusion of
carbon plackets within single walled BN nanotubes is considered within the
proposed formalism. Finally, we show that the inclusion of small BN plackets
inside the CNTs strongly affects the electronic character of the initial
systems, opening a band gap. The nitrogen excess in the BN plackets introduces
donor states in the band gap and it might thus result in a promising way for
n-doping single walled carbon nanotubes
- …
