1,252 research outputs found

    Relation between the phenomenological interactions of the algebraic cluster model and the effective two--nucleon forces

    Get PDF
    We determine the phenomenological cluster--cluster interactions of the algebraic model corresponding to the most often used effective two--nucleon forces for the 16^{16}O + α\alpha system.Comment: Latex with Revtex, 1 figure available on reques

    Study of the Fusion-Fission Process in the 35Cl+24Mg^{35}Cl+^{24}Mg Reaction

    Get PDF
    Fusion-fission and fully energy-damped binary processes of the 35^{35}Cl+24^{24}Mg reaction were investigated using particle-particle coincidence techniques at a 35^{35}Cl bombarding energy of Elab_{lab} \approx 8 MeV/nucleon. Inclusive data were also taken in order to determine the partial wave distribution of the fusion process. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with a relatively large multiplicity of secondary light-charged particles emitted by the two primary excited fragments in the exit channel. No evidence is observed for ternary-breakup processes, as expected from the systematics recently established for incident energies below 15 MeV/nucleon and for a large number of reactions. The binary-process results are compared with predictions of statistical-model calculations. The calculations were performed using the Extended Hauser-Feshbach method, based on the available phase space at the scission point of the compound nucleus. This new method uses temperature-dependent level densities and its predictions are in good agreement with the presented experimental data, thus consistent with the fusion-fission origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the European Physical Journal A - Hadrons and Nucle

    Deformed Base Antisymmetrized Molecular Dynamics and its Application to ^{20}Ne

    Full text link
    A new theoretical framework named as deformed base antisymmetrized molecular dynamics that uses the localized triaxially deformed Gaussian as the single particle wave packet is presented. The model space enables us to describe sufficiently well the deformed mean-field structure as well as the cluster structure and their mixed structure within the same framework. The improvement over the original version of the antisymmetrized molecular dynamics which uses the spherical Gaussian is verified by the application to 20Ne^{20}{\rm Ne} nucleus. The almost pure α+16Og.s\alpha + ^{16}{\rm O_{g.s}} cluster structure of the KπK^\pi=00^- band, the distortion of the cluster structure in the KπK^\pi=01+0^+_1 band and the dominance of the deformed mean-field structure of the KπK^\pi=22^- band are confirmed and their observed properties are reproduced. Especially, the intra-band E2 transition probabilities in KπK^\pi=01+0^+_1 and 22^- bands are reproduced without any effective charge. Since it has been long known that the pure α+16Og.s.\alpha + ^{16}{\rm O}_{g.s.} cluster model underestimates the intra-band E2E2 transitions in the KπK^\pi=01+0^+_1 band by about 30%, we consider that this success is due to the sufficient description of the deformed mean-field structure in addition to the cluster structure by the present framework. From the successful description of 20Ne^{20}{\rm Ne}, we expect that the present framework presents us with a powerful approach for the study of the coexistence and interplay of the mean-field structure and the cluster structure

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    Dissipative collisions in 16^{16}O + 27^{27}Al at Elab_{lab}=116 MeV

    Full text link
    The inclusive energy distributions of fragments (3\leqZ\leq7) emitted in the reaction 16^{16}O + 27^{27}Al at Elab=E_{lab} = 116 MeV have been measured in the angular range θlab\theta_{lab} = 15^\circ - 115^\circ. A non-linear optimisation procedure using multiple Gaussian distribution functions has been proposed to extract the fusion-fission and deep inelastic components of the fragment emission from the experimental data. The angular distributions of the fragments, thus obtained, from the deep inelastic component are found to fall off faster than those from the fusion-fission component, indicating shorter life times of the emitting di-nuclear systems. The life times of the intermediate di-nuclear configurations have been estimated using a diffractive Regge-pole model. The life times thus extracted (15×1022\sim 1 - 5\times 10^{-22} Sec.) are found to decrease with the increase in the fragment charge. Optimum Q-values are also found to increase with increasing charge transfer i.e. with the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl

    Morphology and damping properties of triblock copolymer physical gels

    Get PDF
    This study was conducted in order to develop damping materials for practical applications, such as insulators for compact disk players and hard drive disks. Three types of styrene-based triblock copolymers and various paraffinic oils were selected to produce physical gels with low modulus. These polymer gels can be shaped by injection moulding to reduce the total cost for mass production. The miscibility and the morphology of the systems were examined by modulated-temperature differential scanning calorimetry (M-TDSC), dynamic mechanical thermal analysis (DMTA), transmission electron microscopy (IEM) and small angle X-ray scattering (SAXS). The experimental results showed that the glass transition temperatures of the mid blocks of the block copolymers swollen with the high Mw paraffinic oils obeyed the Fox equation. This means that the added paraffinic oil is selectively miscible with the mid blocks. However, it was also found by TEM that the polystyrene domains were also swollen by the low Mw paraffinic oil. [Continues.

    Fission and cluster decay of 76^{76}Sr nucleus in the ground-state and formed in heavy-ion reactions

    Get PDF
    Calculations for fission and cluster decay of 76Sr^{76}Sr are presented for this nucleus to be in its ground-state or formed as an excited compound system in heavy-ion reactions. The predicted mass distribution, for the dynamical collective mass transfer process assumed for fission of 76Sr^{76}Sr, is clearly asymmetric, favouring α\alpha -nuclei. Cluster decay is studied within a preformed cluster model, both for ground-state to ground-state decays and from excited compound system to the ground-state(s) or excited states(s) of the fragments.Comment: 14 pages LaTeX, 5 Figures available upon request Submitted to Phys. Rev.

    Global Examination of the 12^{12}C+12^{12}C Reaction Data at Low and Intermediate Energies

    Get PDF
    We examine the 12^{12}C+12^{12}C elastic scattering over a wide energy range from 32.0 to 70.7 MeV in the laboratory system within the framework of the Optical model and the Coupled-Channels formalism. The 12^{12}C+12^{12}C system has been extensively studied within and over this energy range in the past. These efforts have been futile in determining the shape of the nuclear potential in the low energy region and in describing the individual angular distributions, single-angle 500^{0} to 900^{0} excitation functions and reaction cross-section data simultaneously. In order to address these problems systematically, we propose a potential that belongs to a family other than the one used to describe higher energy experimental data and show that it is possible to use it over this wide energy range. This potential also predicts the resonances at correct energies with reasonable widths.Comment: 30 pages with 13 eps figues and 3 tables, LaTeX-Revtex

    On the role of different Skyrme forces and surface corrections in exotic cluster-decay

    Full text link
    We present cluster decay studies of 56^{56}Ni^* formed in heavy-ion collisions using different Skyrme forces. Our study reveals that different Skyrme forces do not alter the transfer structure of fractional yields significantly. The cluster decay half-lives of different clusters lies within \pm 10% for PCM and \pm 15% for UFM.Comment: 13 pages,6 figures and 1 table; in press Pramana Journal of Physics (2010

    Synchronization of the Flickering Rhythm of Plasma Jets Caused by the Mutual Induction

    Get PDF
    The interaction of the flickering rhythm between two atmospheric-pressure plasma jets was investigated. The differences between the two He plasma jets produced at atmospheric pressure when brought close to each other were studied based on the percentage agreement between their flickering rhythms. It has been established that the flickering rhythm synchronization mechanism is caused by the mutual induction of voltages applied to the electrodes.Journal of the Physical Society of Japan, 93(9), art. no. 095004; 2024journal articl
    corecore