94 research outputs found

    Adaptive Ensemble Biomolecular Simulations at Scale

    Full text link
    Recent advances in both theory and methods have created opportunities to simulate biomolecular processes more efficiently using adaptive ensemble simulations. Ensemble-based simulations are used widely to compute a number of individual simulation trajectories and analyze statistics across them. Adaptive ensemble simulations offer a further level of sophistication and flexibility by enabling high-level algorithms to control simulations based on intermediate results. Novel high-level algorithms require sophisticated approaches to utilize the intermediate data during runtime. Thus, there is a need for scalable software systems to support adaptive ensemble-based applications. We describe the operations in executing adaptive workflows, classify different types of adaptations, and describe challenges in implementing them in software tools. We enhance Ensemble Toolkit (EnTK) -- an ensemble execution system -- to support the scalable execution of adaptive workflows on HPC systems, and characterize the adaptation overhead in EnTK. We implement two high-level adaptive ensemble algorithms -- expanded ensemble and Markov state modeling, and execute upto 2122^{12} ensemble members, on thousands of cores on three distinct HPC platforms. We highlight scientific advantages enabled by the novel capabilities of our approach. To the best of our knowledge, this is the first attempt at describing and implementing multiple adaptive ensemble workflows using a common conceptual and implementation framework

    High-throughput Binding Affinity Calculations at Extreme Scales

    Get PDF
    Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either pre-existing or evolutionarily selected during treatment. Key to overcoming this challenge is an understanding of the molecular determinants of drug binding. Using multi-stage pipelines of molecular simulations we can gain insights into the binding free energy and the residence time of a ligand, which can inform both stratified and personal treatment regimes and drug development. To support the scalable, adaptive and automated calculation of the binding free energy on high-performance computing resources, we introduce the High- throughput Binding Affinity Calculator (HTBAC). HTBAC uses a building block approach in order to attain both workflow flexibility and performance. We demonstrate close to perfect weak scaling to hundreds of concurrent multi-stage binding affinity calculation pipelines. This permits a rapid time-to-solution that is essentially invariant of the calculation protocol, size of candidate ligands and number of ensemble simulations. As such, HTBAC advances the state of the art of binding affinity calculations and protocols
    corecore