3,259 research outputs found

    Effects of the galactic winds on the stellar metallicity distribution of dwarf spheroidal galaxies

    Full text link
    To study the effects of galactic winds on the stellar metallicity distributions and on the evolution of Draco and Ursa Minor dwarf spheroidal galaxies, we compared the predictions of several chemical evolution models, adopting different prescriptions for the galactic winds, with the photometrically-derived stellar metallicity distributions of both galaxies. The chemical evolution models for Draco and Ursa Minor, which are able to reproduce several observational features of these two galaxies, such as the several abundance ratios, take up-to-date nucleosynthesis into account for intermediate-mass stars and supernovae of both types, as well as the effect of these objects on the energetics of the systems. For both galaxies, the model that best fits the data contains an intense continuous galactic wind, occurring at a rate proportional to the star formation rate. Models with a wind rate assumed to be proportional only to the supernova rate also reproduce the observed SMD, but do not match the gas mass, whereas the models with no galactic winds fail to reproduce the observed SMDs. In the case of Ursa Minor, the same model as in previous works reproduces the observed distribution very well with no need to modify the main parameters of the model. The model for Draco, on the other hand, is slightly modified. The observed SMD requires a model with a lower supernova type Ia thermalization efficiency (ηSNeIa\eta_{SNeIa} = 0.5 instead of ηSNeIa\eta_{SNeIa} = 1.0) in order to delay the galactic wind, whereas all the other parameters are kept the same. The model results, compared to observations, strongly suggest that intense and continuous galactic winds play a very important role in the evolution of local dSphs.Comment: 11 pages, 7 figures, accepted for publication in Asttronomy & Astrophysic

    A possible theoretical explanation of metallicity gradients in elliptical galaxies

    Get PDF
    Models of chemical evolution of elliptical galaxies taking into account different escape velocities at different galactocentric radii are presented. As a consequence of this, the chemical evolution develops differently in different galactic regions; in particular, we find that the galactic wind, powered by supernovae (of type II and I) starts, under suitable conditions, in the outer regions and successively develops in the central ones. The rate of star formation (SFR) is assumed to stop after the onset of the galactic wind in each region. The main result found in the present work is that this mechanism is able to reproduce metallicity gradients, namely the gradients in the Mg2Mg_2 index, in good agreement with observational data. We also find that in order to honor the constant [Mg/Fe] ratio with galactocentric distance, as inferred from metallicity indices, a variable initial mass function as a function of galactocentric distance is required. This is only a suggestion since trends on abundances inferred just from metallicity indices are still uncertain.Comment: 18 pages, LaTeX file with 4 figures using mn.sty, submitted to MNRA

    Chemical evolution of the Galactic bulge: different stellar populations and possible gradients

    Full text link
    We compute the chemical evolution of the Galactic bulge to explain the existence of two main stellar populations recently observed. After comparing model results and observational data we suggest that the old more metal poor stellar population formed very fast (on a timescale of 0.1-0.3 Gyr) by means of an intense burst of star formation and an initial mass function flatter than in the solar vicinity whereas the metal rich population formed on a longer timescale (3 Gyr). We predict differences in the mean abundances of the two populations (-0.52 dex for ) which can be interpreted as a metallicity gradients. We also predict possible gradients for Fe, O, Mg, Si, S and Ba between sub-populations inside the metal poor population itself (e.g. -0.145 dex for ). Finally, by means of a chemo-dynamical model following a dissipational collapse, we predict a gradient inside 500 pc from the Galactic center of -0.26 dex kpc^{-1} in Fe.Comment: 9 pages, 9 figures, accepted for publication in Section 5. of Astronomy and Astrophysic

    Modelling the nova rate in galaxies

    Full text link
    We compute theoretical nova rates as well as type Ia SN rates in galaxies of different morphological type (Milky Way, ellipticals and irregulars) by means of detailed chemical evolution models, and compare them with the most recent observations. The main difference among the different galaxies is the assumed history of star formation. In particular, we predict that the nova rates in giant ellipticals such as M87 are 100-300 nova/yr, about a factor of ten larger than in our Galaxy (25 nova/yr), in agreement with very recent estimates from HST data. The best agreement with the observed rates is obtained if the recurrence time of novae in ellipticals is assumed to be longer than in the Milky Way. This result indicates that the star formation rate in ellipticals, and in particular in M87, must have been very efficient at early cosmic epochs. We predict a nova rate for the LMC of 1.7 nova/yr, again in agreement with observations. We compute also the K- and B-band luminosities for ellipticals of different luminous mass and conclude that there is not a clear trend for the luminosity specific nova rate with luminosity among these galaxies. However, firm conclusions about ellipticals cannot be drawn because of possible observational biases in observing these objects. The comparison between the specific nova rates in the Milky Way and the LMC indicates a trend of increasing nova rate passing from the Galaxy towards late-type spirals and Magellanic irregulars.Comment: 9 pages, 5 figures, Astronomy and Astrophysics accepte

    The chemical evolution of Manganese in different stellar systems

    Full text link
    Aims. To model the chemical evolution of manganese relative to iron in three different stellar systems: the solar neighbourhood, the Galactic bulge and the Sagittarius dwarf spheroidal galaxy, and compare our results with the recent and homogeneous observational data. Methods. We adopt three chemical evolution models well able to reproduce the main properties of the solar vicinity, the galactic Bulge and the Sagittarius dwarf spheroidal. Then, we compare different stellar yields in order to identify the best set to match the observational data in these systems. Results. We compute the evolution of manganese in the three systems and we find that in order to reproduce simultaneously the [Mn/Fe] versus [Fe/H] in the Galactic bulge, the solar neighbourhood and Sagittarius, the type Ia SN Mn yield must be metallicity-dependent. Conclusions. We conclude that the different histories of star formation in the three systems are not enough to reproduce the different behaviour of the [Mn/Fe] ratio, unlike the situation for [alpha/Fe]; rather, it is necessary to invoke metallicity-dependent type Ia SN Mn yields, as originally suggested by McWilliam, Rich & Smecker-Hane in 2003.Comment: 9 pages, 3 figures, submitted to A&

    The formation of the [alpha/Fe] radial gradients in the stars of elliptical galaxies

    Full text link
    The scope of this paper is two-fold: i) to test and improve our previous models of an outside-in formation for the majority of ellipticals in the context of the SN-driven wind scenario, by means of a careful study of gas inflows/outflows; ii) to explain the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables. In order to pursue these goals we present a new class of hydrodynamical simulations for the formation of single elliptical galaxies in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. We find that all the models which predict chemical properties (such as the central mass-weighted abundance ratios, the colours as well as the [] gradient) within the observed ranges for a typical elliptical, also exhibit a variety of gradients in the [] ratio, in agreement with the observations (namely positive, null or negative). All these models undergo an outside-in formation, in the sense that star formation stops earlier in the outermost than in the innermost regions, owing to the onset of a galactic wind. The typical [] gradients predicted by our models have a slope of -0.3 dex per decade variation in radius, consistent with the mean values of several observational samples. We can safely conclude that the history of star formation is fundamental for the creation of abundance gradients in ellipticals but that radial flows with different velocity in conjunction with the duration and efficiency of star formation in different galactic regions are responsible for the gradients in the [] ratios.Comment: A&A accepted, replaced with final version after the peer-review proces
    corecore