2,638 research outputs found

    The Chemical Evolution of the Galaxy: the two-infall model

    Get PDF
    In this paper we present a new chemical evolution model for the Galaxy which assumes two main infall episodes for the formation of halo-thick disk and thin disk, respectively. We do not try to take into account explicitly the evolution of the halo but we implicitly assume that the timescale for the formation of the halo was of the same order as the timescale for the formation of the thick disk. The formation of the thin-disk is much longer than that of the thick disk, implying that the infalling gas forming the thin-disk comes not only from the thick disk but mainly from the intergalactic medium. The timescale for the formation of the thin-disk is assumed to be a function of the galactocentric distance, leading to an inside-out picture for the Galaxy building. The model takes into account the most up to date nucleosynthesis prescriptions and adopts a threshold in the star formation process which naturally produces a hiatus in the star formation rate at the end of the thick disk phase, as suggested by recent observations. The model results are compared with an extended set of observational constraints. Among these constraints, the tightest one is the metallicity distribution of the G-dwarf stars for which new data are now available. Our model fits very well these new data. We show that in order to reproduce most of these constraints a timescale 1\le 1 Gyr for the (halo)-thick-disk and of 8 Gyr for the thin-disk formation in the solar vicinity are required. We predict that the radial abundance gradients in the inner regions of the disk (R<RR< R_{\odot}) are steeper than in the outer regions, a result confirmed by recent abundance determinations, and that the inner ones steepen in time during the Galactic lifetime.Comment: 48 pages, 20 Postscript figures, AASTex v.4.0, to be published in Astrophysical Journa

    K dwarfs and the chemical evolution of the Solar cylinder

    Get PDF
    K-dwarfs have life-times older than the present age of the Galactic disc, and are thus ideal stars to investigate the disc's chemical evolution. We have developed several photometric metallicity indicators for K dwarfs, based an a sample of accurate spectroscopic metallicities for 34 disc and halo G and K dwarfs. The photometric metallicities lead us to develop a metallicity index for K dwarfs based only on their position in the colour absolute-magnitude diagram. Metallicities have been determined for 431 single K dwarfs drawn from the Hipparcos catalog, selecting the stars by absolute magnitude and removing multiple systems. The sample is essentially a complete reckoning of the metal content in nearby K dwarfs. We use stellar isochrones to mark the stars by mass, and select a subset of 220 of the stars which is complete in a narrow mass interval. We fit the data with a model of the chemical evolution of the Solar cylinder. We find that only a modest cosmic scatter is required to fit our age metallicity relation. The model assumes two main infall episodes for the formation of the halo-thick disc and thin disc respectively. The new data confirms that the solar neighbourhood formed on a long timescale of order 7 Gyr.Comment: 14 pages, 15 figures, accepted by MNRA

    Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models

    Full text link
    We analyze the evolution of colour gradients predicted by the hydrodynamical models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and eps_SF, i.e. the normalization of SF rate. From the comparison with high redshift data, a full agreement with optical rest-frame observations at z < 1 is found, for models with low eps_SF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high eps_SF systems with the shallower colour gradients observed at lower z we suggest intervention of 1-2 dry mergers. We suggest that future studies should explore the impact of wet galaxy mergings, interactions with environment, dust content and a variation of the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA

    The impact of stellar rotation on the CNO abundance patterns in the Milky Way at low metallicities

    Get PDF
    We investigate the effect of new stellar models, which take rotation into account, computed for very low metallicities on the chemical evolution of the earliest phases of the Milky Way. We check the impact of these new stellar yields on a model for the halo of the Milky Way that can reproduce the observed halo metallicity distribution. In this way we try to better constrain the ISM enrichment timescale, which was not done in our previous work. The stellar models adopted in this work were computed under the assumption that the ratio of the initial rotation velocity to the critical velocity of stars is roughly constant with metallicity. This naturally leads to faster rotation at lower metallicity, as metal poor stars are more compact than metal rich ones. We find that the new Z = 10-8 stellar yields computed for large rotational velocities have a tremendous impact on the interstellar medium nitrogen enrichment for log(O/H)+12 < 7 (or [Fe/H]< -3). We show that upon the inclusion of the new stellar calculations in a chemical evolution model for the galactic halo with infall and outflow, both high N/O and C/O ratios are obtained in the very-metal poor metallicity range in agreement with observations. Our results give further support to the idea that stars at very low metallicities could have initial rotational velocities of the order of 600-800kms-1. An important contribution to N from AGB stars is still needed in order to explain the observations at intermediate metallicities. One possibility is that AGB stars at very low metallicities also rotate fast. This could be tested in the future, once stellar evolution models for fast rotating AGB stars will be available.Comment: Contribution to Nuclei in the Cosmos IX (Proceedings of Science - 9 pages, 4 figs., accepted) - Version 2: one reference added in the caption of Fig.

    The dust content of QSO hosts at high redshift

    Full text link
    Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by standard model assumptions. We provide predictions regarding the abundance of the descendants of QSO hosts; albeit rare, such systems should be present and detectable by future deep surveys such as Euclid already at z>4.Comment: 22 pages, 8 figures, MNRAS, accepte

    IUE observations of oxygen-rich supernova remnants

    Get PDF
    The IUE observations were used to determine the composition of the ejecta (especially C and Si abundances) and to test models for the ionization and excitation of the ejecta of two oxygen-rich supernova remnants (N132D in the Large Magellanic Cloud and 1E 0102-7219 in the Small Magellanic Cloud). Time-dependent photoionization by the EUV and X-ray radiation from 1E 0102-7219 can qualitatively explain its UV and optical line emission, but the density and ionization structures are complex and prevent a unique model from being specified. Many model parameters are poorly constrained, including the time dependence and shape of the ionizing spectrum. Moreover, the models presented are not self-consistent in that the volumes and densities of the optically emitting gas imply optical depths of order unity in the EUV, but absorption of the ionizing radiation was ignored. It is possible that these shortcomings reflect a more fundamental limitation of the model assumptions. It is assumed that the electron velocity distribution is Maxwellian and that the energy deposited by photoionization heats the electrons directly. The 500 eV electrons produced by the Auger process may excite or ionize other ions before they slow down enough to share their energy with other electrons. Many of the excitations would produce photons that could ionize lower ionization stages

    Retrotransposon-Encoded Reverse Transcriptase in the Genesis, Progression and Cellular Plasticity of Human Cancer

    Get PDF
    LINE-1 (Long Interspersed Nuclear Elements) and HERVs (Human Endogenous Retroviruses) are two families of autonomously replicating retrotransposons that together account for about 28% of the human genome. Genes harbored within LINE-1 and HERV retrotransposons, particularly those encoding the reverse transcriptase (RT) enzyme, are generally expressed at low levels in differentiated cells, but their expression is upregulated in transformed cells and embryonic tissues. Here we discuss a recently discovered RT-dependent mechanism that operates in tumorigenesis and reversibly modulates phenotypic and functional variations associated with tumor progression. Downregulation of active LINE-1 elements drastically reduces the tumorigenic potential of cancer cells, paralleled by reduced proliferation and increased differentiation. Pharmacological RT inhibitors (e.g., nevirapine and efavirenz) exert similar effects on tumorigenic cell lines, both in culture and in animal models. The HERV-K family play a distinct complementary role in stress-dependent transition of melanoma cells from an adherent, non-aggressive, to a non-adherent, highly malignant, growth phenotype. In synthesis, the retrotransposon-encoded RT is increasingly emerging as a key regulator of tumor progression and a promising target in a novel anti-cancer therapy

    On Dwarf Galaxies as the Source of Intracluster Gas

    Get PDF
    Recent observational evidence for steep dwarf galaxy luminosity functions in several rich clusters has led to speculation that their precursors may be the source of the majority of gas and metals inferred from intracluster medium (ICM) x-ray observations. Their deposition into the ICM is presumed to occur through early supernovae-driven winds, the resultant systems reflecting the photometric and chemical properties of the low luminosity dwarf spheroidals and ellipticals we observe locally. We consider this scenario, utilising a self-consistent model for spheroidal photo-chemical evolution and gas ejection via galactic superwinds. Insisting that post-wind dwarfs obey the observed colour-luminosity-metallicity relations, we conclude that the bulk of the ICM gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol 473, 1997, in pres

    The Earliest Phases of Galaxy Evolution

    Get PDF
    In this paper we study the very early phases of the evolution of our Galaxy by means of a chemical evolution model which reproduces most of the observational constraints in the solar vicinity and in the disk. We have restricted our analysis to the solar neighborhood and present the predicted abundances of several elements (C, N, O, Mg, Si, S, Ca, Fe) over an extended range of metallicities [Fe/H]=4.0[Fe/H] = -4.0 to [Fe/H]=0.0[Fe/H] = 0.0 compared to previous models. We adopted the most recent yield calculations for massive stars taken from different authors (Woosley & Weaver 1995 and Thielemann et al. 1996) and compared the results with a very large sample of data, one of the largest ever used to this purpose. These data have been analysed with a new and powerful statistical method which allows us to quantify the observational spread in measured elemental abundances and obtain a more meaningful comparison with the predictions from our chemical evolution model. Our analysis shows that the ``plateau'' observed for the [α\alpha/Fe] ratios at low metallicities (3.0<[Fe/H]<1.0-3.0< [Fe/H] <-1.0) is not perfectly constant but it shows a slope, especially for oxygen. This slope is very well reproduced by our model with both sets of yields. This is not surprising since realistic chemical evolution models, taking into account in detail stellar lifetimes, never predicted a completely flat plateau. This is due either to the fact that massive stars of different mass produce a slightly different O/Fe ratio or to the often forgotten fact that supernovae of type Ia, originating from white dwarfs, start appearing already at a galactic age of 30 million years and reach their maximum at 1 Gyr.Comment: 32 pages, 9 figures, to be published in Ap

    Empirically Derived Integrated Stellar Yields of Fe-Peak Elements

    Full text link
    We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, Fe, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity -- these two elements have opposite slopes -- as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.Comment: 27 pages, 6 figures; Accepted for Publication in the Astrophysical Journa
    corecore