15 research outputs found

    Cards from St. Matthew's Church

    No full text

    St. Matthew's Holy Name Society records, MSS.2310

    No full text
    Abstract: Minute book for St. Matthew's Holy Name Society in Mobile, AlabamaScope and Content Note: This collection contains a minute book for St. Matthew's Holy Name Society in Mobile, Alabama. The ledger is not in the best condition; care should be used when handling it.Biographical/Historical Note

    Invoice from St. Matthew's Church, Wheeling, West Virginia, to Stimpson H. Woodward, Novmeber 23, 1878

    No full text
    A document from an extensive collection spanning four generations of the Woodward family that operated merchant pig iron companies in West Virginia and Alabama. The collection begins with Stimpson Harvey Woodward (S. H. Woodward), a native of Massachusetts, who moved from Pittsburgh to Wheeling, West Virginia in 1852. He had interests in an iron company as early as 1852 in West Virginia and began Alabama operations in 1869. The family business continued in Alabama until the death of S. H. Woodward's great-grandson in 1965

    Invoice from St. Matthew's Church, Wheeling, West Virginia, to Stimpson H. Woodward, 1878

    No full text
    A document from an extensive collection spanning four generations of the Woodward family that operated merchant pig iron companies in West Virginia and Alabama. The collection begins with Stimpson Harvey Woodward (S. H. Woodward), a native of Massachusetts, who moved from Pittsburgh to Wheeling, West Virginia in 1852. He had interests in an iron company as early as 1852 in West Virginia and began Alabama operations in 1869. The family business continued in Alabama until the death of S. H. Woodward's great-grandson in 1965

    Invoice from St. Matthew's Church, Wheeling, West Virginia, to Stimpson H. Woodward, March 28, 1881

    No full text
    A document from an extensive collection spanning four generations of the Woodward family that operated merchant pig iron companies in West Virginia and Alabama. The collection begins with Stimpson Harvey Woodward (S. H. Woodward), a native of Massachusetts, who moved from Pittsburgh to Wheeling, West Virginia in 1852. He had interests in an iron company as early as 1852 in West Virginia and began Alabama operations in 1869. The family business continued in Alabama until the death of S. H. Woodward's great-grandson in 1965

    Design of an automatic defect detection system for plastic bottle crates

    No full text
    Este proyecto de investigación propone el desarrollo e implementación de un sistema de inspección automática de cajas de plástico mediante visión por computadora, diseñado para optimizar los procesos de producción en la industria cervecera. La principal finalidad de este sistema es identificar defectos físicos, como roturas y residuos dentro de las cajas, lo cual puede ocasionar el riesgo de rotura de botellas durante el proceso de empaquetado y demoras en la línea de producción. Para ello, se emplea una Raspberry Pi junto con una red neuronal convolucional (CNN) SSD MobileNet V2 FPN Lite entrenada para la detección de irregularidades en las cajas. Este sistema permite clasificar las cajas en función de su estado, de manera que se pueda identificar rápidamente aquellas que no cumplen con los estándares de calidad establecidos, evitando su paso hacia las etapas siguientes del proceso de producción. El control del sistema de transporte de las cajas se logra mediante un variador de frecuencia, un sensor fotoeléctrico y un relé, integrando de manera eficiente el control del flujo de cajas con el procesamiento de imágenes en tiempo real. La CNN fue entrenada con un conjunto de datos representativo, logrando una precisión del 82% en la detección de defectos, lo que demuestra la efectividad del sistema para minimizar paradas no planificadas y pérdidas durante el proceso de producción. Los resultados obtenidos serán evaluados con métricas de eficiencia operacional, incluyendo el tiempo de inactividad, el índice de errores y la precisión en la detección de defectos. Este enfoque integral, que combina tecnologías avanzadas de visión artificial y automatización, tiene como objetivo mejorar significativamente la productividad y calidad en la línea de producción de la industria cervecera.This research project proposes the development and implementation of an automatic inspection system for plastic crates using computer vision, aimed at optimizing production processes in the brewing industry. The main objective of this system is to detect physical defects such as cracks and debris inside the crates, which can lead to bottle breakage during packaging and delays in the production line. The system uses a Raspberry Pi and a convolutional neural network (CNN) trained to detect irregularities in the crates. The system classifies the crates based on their condition, allowing for the rapid identification of those that do not meet the required quality standards, preventing them from progressing further in the production process. The control of the crate transportation system is achieved through a variable frequency drive, a photoelectric sensor, and a relay, efficiently integrating crate flow control with real-time image processing. The CNN was trained with a representative dataset, achieving an accuracy of 82% in defect detection. This demonstrates the system’s effectiveness in significantly reducing unplanned downtime and losses during production. Furthermore, the system can identify defects that may not be visible to human operators, ensuring a higher standard of quality control. The results will be evaluated using operational efficiency metrics, such as downtime, error rates, and detection accuracy. This comprehensive approach combines cutting-edge computer vision and automation technologies, aiming to improve both the productivity and quality of the brewing industry’s production line. By minimizing defects and optimizing workflows, this system has the potential to make a meaningful impact on industrial processes, reducing costs and improving production reliability.Trabajo de suficiencia profesionalODS 9: Industria, Innovación e InfraestructuraODS 12: Producción y Consumo ResponsablesODS 8: Trabajo Decente y Crecimiento Económic
    corecore