10,321 research outputs found
Incorporating heuristics in a swarm intelligence framework for inferring gene regulatory networks from gene expression time series
On the Complexity and Performance of Parsing with Derivatives
Current algorithms for context-free parsing inflict a trade-off between ease
of understanding, ease of implementation, theoretical complexity, and practical
performance. No algorithm achieves all of these properties simultaneously.
Might et al. (2011) introduced parsing with derivatives, which handles
arbitrary context-free grammars while being both easy to understand and simple
to implement. Despite much initial enthusiasm and a multitude of independent
implementations, its worst-case complexity has never been proven to be better
than exponential. In fact, high-level arguments claiming it is fundamentally
exponential have been advanced and even accepted as part of the folklore.
Performance ended up being sluggish in practice, and this sluggishness was
taken as informal evidence of exponentiality.
In this paper, we reexamine the performance of parsing with derivatives. We
have discovered that it is not exponential but, in fact, cubic. Moreover,
simple (though perhaps not obvious) modifications to the implementation by
Might et al. (2011) lead to an implementation that is not only easy to
understand but also highly performant in practice.Comment: 13 pages; 12 figures; implementation at
http://bitbucket.org/ucombinator/parsing-with-derivatives/ ; published in
PLDI '16, Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 13 - 17, 2016, Santa Barbara, CA,
US
Patterns of Scalable Bayesian Inference
Datasets are growing not just in size but in complexity, creating a demand
for rich models and quantification of uncertainty. Bayesian methods are an
excellent fit for this demand, but scaling Bayesian inference is a challenge.
In response to this challenge, there has been considerable recent work based on
varying assumptions about model structure, underlying computational resources,
and the importance of asymptotic correctness. As a result, there is a zoo of
ideas with few clear overarching principles.
In this paper, we seek to identify unifying principles, patterns, and
intuitions for scaling Bayesian inference. We review existing work on utilizing
modern computing resources with both MCMC and variational approximation
techniques. From this taxonomy of ideas, we characterize the general principles
that have proven successful for designing scalable inference procedures and
comment on the path forward
Active regulation of the epidermal calcium profile
A distinct calcium profile is strongly implicated in regulating the multi-layered structure of the epidermis. However, the mechanisms that govern the regulation of this calcium profile are currently unclear. It clearly depends on the relatively impermeable barrier of the stratum corneum (passive regulation) but may also depend on calcium exchanges between keratinocytes and extracellular fluid (active regulation). Using a mathematical model that treats the viable sublayers of unwounded human and murine epidermis as porous media and assumes that their calcium profiles are passively regulated, we demonstrate that these profiles are also actively regulated. To obtain this result, we found that diffusion governs extracellular calcium motion in the viable epidermis and hence intracellular calcium is the main source of the epidermal calcium profile. Then, by comparison with experimental calcium profiles and combination with a hypothesised cell velocity distribution in the viable epidermis, we found that the net influx of calcium ions into keratinocytes from extracellular fluid may be constant and positive throughout the stratum basale and stratum spinosum, and that there is a net outflux of these ions in the stratum granulosum. Hence the calcium exchange between keratinocytes and extracellular fluid differs distinctly between the stratum granulosum and the underlying sublayers, and these differences actively regulate the epidermal calcium profile. Our results also indicate that plasma membrane dysfunction may be an early event during keratinocyte disintegration in the stratum granulosum
Enhanced Dynamometer for Conducting Long-Term Brake Wear Testing
The purpose of this project is to develop an automated control system for two constant torque dynamometers Krauss Friction Tester Type RWS60A – Serial no. 080 built in Orangeburg, West Germany recently obtained by FDP Friction Science. This control system will be efficient, effective, safer, and meet the standards of modern day technologies. Currently, the machines are outdated, obsolete, and unable to operate. Therefore, to bring the dynamometers back into full operation and be competitive in today’s industry a new control system that meets industry expectations must be implemented. For this reason, a programmable logic controller from Automationdirect named ClickPLC is being utilized. This industrial computer control system will continuously monitor the state of input for the device while determining the desired outputs based on a ladder logic program written by the control system designers.
To create interference between the operator and the machine a C-more touch panel human machine interference from Automationdirect will be use. The HMI will provide a graphical interface designed to interchange and display graphics, animation and data from the PLC by touching the screen. The HMI will be programed accordingly to replace pushbuttons, switches, meters and any other analog input devices. This will streamline the brake life testing process down to a one-man operation for cost effectiveness.https://scholarscompass.vcu.edu/capstone/1196/thumbnail.jp
Recommended from our members
Do emotional faces capture attention, and does this depend on awareness? Evidence from the visual probe paradigm
The visual probe (VP) paradigm provides evidence that emotional stimuli attract attention. Such effects have been reported even when stimuli are presented outside of awareness. These findings have shaped the idea that humans possess a processing pathway that detects evolutionarily significant signals independently of awareness. Here, we addressed 2 unresolved questions: First, if emotional stimuli attract attention, is this driven by their affective content, or by low-level image properties (e.g., luminance contrast)? Second, does attentional capture occur under conditions of genuine unawareness? We found that observers preferentially allocated attention to emotional faces under aware viewing conditions. However, this effect was best explained by low-level stimulus properties, rather than emotional content. When stimuli were presented outside of awareness (via continuous flash suppression or masking), we found no evidence that attention was directed toward emotional face stimuli. Finally, observer's awareness of the stimuli (assessed by d') predicted attentional cuing. Our data challenge existing literature: First, we cast doubt on the notion of preferential attention to emotional stimuli in the absence of awareness. Second, we question whether effects revealed by the VP paradigm genuinely reflect emotion-sensitive processes, instead suggesting they can be more parsimoniously explained by low-level variability between stimuli. (PsycINFO Database Record (c) 2019 APA, all rights reserved)
- …
