18,131 research outputs found
Deterministic quantum state transfer of atoms in a random magnetic field
We propose a method for transferring atoms to a target quantum state for a
multilevel quantum system with sequentially increasing, but otherwise unknown,
energy splitting. This is achieved with a feedback algorithm that processes
off-resonant optical measurements of state populations during adiabatic rapid
passage in real-time. Specifically, we reliably perform the transfer
for a
sample of ultracold Rb in the presence of a random external magnetic
field
Algebraic properties of generalized Rijndael-like ciphers
We provide conditions under which the set of Rijndael functions considered as
permutations of the state space and based on operations of the finite field
\GF (p^k) ( a prime number) is not closed under functional
composition. These conditions justify using a sequential multiple encryption to
strengthen the AES (Rijndael block cipher with specific block sizes) in case
AES became practically insecure. In Sparr and Wernsdorf (2008), R. Sparr and R.
Wernsdorf provided conditions under which the group generated by the
Rijndael-like round functions based on operations of the finite field \GF
(2^k) is equal to the alternating group on the state space. In this paper we
provide conditions under which the group generated by the Rijndael-like round
functions based on operations of the finite field \GF (p^k) () is
equal to the symmetric group or the alternating group on the state space.Comment: 22 pages; Prelim0
An efficient new route to dihydropyranobenzimidazole inhibitors of HCV replication.
A class of dihydropyranobenzimidazole inhibitors was recently discovered that acts against the hepatitis C virus (HCV) in a new way, binding to the IRES-IIa subdomain of the highly conserved 5' untranslated region of the viral RNA and thus preventing the ribosome from initiating translation. However, the reported synthesis of these compounds is lengthy and low-yielding, the intermediates are troublesome to purify, and the route is poorly structured for the creation of libraries. We report a streamlined route to this class of inhibitors in which yields are far higher and most intermediates are crystalline. In addition, a key variable side chain is introduced late in the synthesis, allowing analogs to be easily synthesized for optimization of antiviral activity
Theme Overview: Agriculture and Water Quality in the Cornbelt: Overview of Issues and Approaches
Resource /Energy Economics and Policy, Q25,
THIRD INTERNATIONAL SYMPOSIUM ON RANAVIRUSES:: ADVANCING THE UNDERSTANDING OF THE THREAT OF RANAVIRUSES TO NORTH AMERICAN HERPETOFAUNA
Members of the genus Ranavirus, one of five genera withinthe family Iridoviridae, encompass a group of large, doublestrandedDNA viruses that infect all three classes of ectothermicvertebrates: fish, amphibians, and reptiles. Ranaviruses areglobally emerging pathogens that cause considerable morbidityand mortality among diverse populations. In North America,ranavirus epizootics are regularly reported in wild and culturedfish, amphibian, and reptile populations
A convenient method for the generation of {Rh(PNP)}+ and {Rh(PONOP)}+ fragments : reversible formation of vinylidene derivatives
The substitution reactions of [Rh(COD)2][BArF4] with PNP and PONOP pincer ligands 2,6-bis(di-tert-butylphosphinomethyl)pyridine and 2,6-bis(di-tert-butylphosphinito)pyridine in the weakly coordinating solvent 1,2-F2C6H4 are shown to be an operationally simple method for the generation of reactive formally 14 VE rhodium(I) adducts in solution. Application of this methodology enables synthesis of known adducts of CO, N2, H2, previously unknown water complexes, and novel vinylidene derivatives [Rh(pincer)(CCHR)][BArF4] (R = tBu, 3,5-tBu2C6H3), through reversible reactions with terminal alkynes
Trabecular bone structure correlates with hand posture and use in hominoids
Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred behaviour and trabecular structure in extant hominoids that can be informative for reconstructing behaviour in fossil primates
- …
