189 research outputs found

    Concordance of copy number abnormality detection using SNP arrays and Multiplex Ligation-dependent Probe Amplification (MLPA) in acute lymphoblastic leukaemia

    Get PDF
    In acute lymphoblastic leukaemia, MLPA has been used in research studies to identify clinically relevant copy number abnormality (CNA) profiles. However, in diagnostic settings other techniques are often employed. We assess whether equivalent CNA profiles are called using SNP arrays, ensuring platform independence. We demonstrate concordance between SNP6.0 and MLPA CNA calling on 143 leukaemia samples from two UK trials; comparing 1,287 calls within eight genes and a region. The techniques are 99% concordant using manually augmented calling, and 98% concordant using an automated pipeline. We classify these discordant calls and examine reasons for discordance. In nine cases the circular binary segmentation (CBS) algorithm failed to detect focal abnormalities or those flanking gaps in IKZF1 probe coverage. Eight cases were discordant due to probe design differences, with focal abnormalities detectable using one technique not observable by the other. Risk classification using manually augmented array calling resulted in four out of 143 patients being assigned to a different CNA risk group and eight patients using the automated pipeline. We conclude that MLPA defined CNA profiles can be accurately mirrored by SNP6.0 or similar array platforms. Automated calling using the CBS algorithm proved successful, except for IKZF1 which should be manually inspected

    Dynamic clonal progression in xenografts of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21

    Get PDF
    Intrachromosomal amplification of chromosome 21 is a heterogeneous chromosomal rearrangement occurring in 2% of childhood precursor B-cell acute lymphoblastic leukemia. There are no cell lines with iAMP21 and these abnormalities are too complex to faithfully engineer in animal models. As a resource for future functional and pre-clinical studies, we have created xenografts from intrachromosomal amplification of chromosome 21 leukemia patient blasts and characterised them by in-vivo and ex-vivo luminescent imaging, FLOW immunophenotyping, and histological and ultrastructural analysis of bone marrow and the central nervous system. Investigation of up to three generations of xenografts revealed phenotypic evolution, branching genomic architecture and, compared with other B-cell acute lymphoblastic leukemia genetic subtypes, greater clonal diversity of leukemia initiating cells. In support of intrachromosomal amplification of chromosome 21 as a primary genetic abnormality, it was always retained through generations of xenografts, although we also observed the first example of structural evolution of this rearrangement. Clonal segregation in xenografts revealed convergent evolution of different secondary genomic abnormalities implicating several known tumour suppressor genes and a region, containing the B-cell adaptor, PIK3AP1, and nuclear receptor co-repressor, LCOR, in the progression of B-ALL. Tracking of mutations in patients and derived xenografts provided evidence for co-operation between abnormalities activating the RAS pathway in B-ALL and for their aggressive clonal expansion in the xeno-environment. Bi-allelic loss of the CDKN2A/B locus was recurrently maintained or emergent in xenografts and also strongly selected as RNA sequencing demonstrated a complete absence of reads for genes associated with the deletions

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    Crowdsourcing genomic analyses of ash and ash dieback – power to the people

    Get PDF
    Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository

    SPEAR: Systematic ProtEin AnnotatoR

    Get PDF
    Summary We present SPEAR, a lightweight and rapid SARS-CoV-2 variant annotation and scoring tool, for identifying mutations contributing to potential immune escape and transmissibility (ACE2 binding) at point of sequencing. SPEAR can be used in the field to evaluate genomic surveillance results in real-time and features a powerful interactive data visualisation report. Availability and implementation SPEAR and documentation are freely available on GitHub: https://github.com/m-crown/SPEAR and is implemented in Python and installable via Conda environment. Supplemental Supplementary data are available at Bioinformatics online

    An integrated national scale SARS-CoV-2 genomic surveillance network.

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) Genomics UK Consortium (COG-UK) was launched in March, 2020, with £20 million support from UK Research and Innovation, the UK Department of Health and Social Care, and Wellcome Trust. The goal of this consortium is to sequence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for up to 230 000 patients, health-care workers, and other essential workers in the UK with COVID-19, which will help to enable the tracking of SARS-CoV-2 transmission, identify viral mutations, and integrate with health data to assess how the viral genome interacts with cofactors and consequences of COVID-19

    Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures

    Get PDF
    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation

    House dust - a Pandora’s box of antimicrobial resistance (AMR) activity?

    Get PDF
    The presence and spread of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistant Genes (ARGs) in the environment is now recognised as one of the top ten global public health threats to humanity. In a previous study, we used citizen science and MiSeq to target 16S rRNA gene amplicons to investigate house dust microbiomes across diverse households and found a core microbiome. In this study, we used shotgun metagenomics to target antimicrobial resistance (AMR) genes in order to investigate the potential for functional differences and to test the hypothesis that there was a core resistome associated with this core microbiome, including any patterns in a core resistome in terms of likely origin and mechanisms of action. In this study we did not find a core resistome, but found that the predominant and most diverse mechanisms of Anti-Microbial Resistance (AMR) in the dust samples were antibiotic target alteration and antibiotic efflux, accounting for ∼70% of cumulative RPKMs detected, potentially representing a compromise between the certainty of working and energy investment required. Despite the core home microbiome previously detected in diverse house dust samples, there was only limited evidence for a core resistome, with only two AMR genes present in all samples

    Critical roles of arginine in growth and biofilm development by Streptococcus gordonii

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112199/1/mmi13023.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112199/2/mmi13023-sup-0001-si.pd

    Evolutionary genomics of a cold-adapted diatom: Fragilariopsis cylindrus

    Get PDF
    The Southern Ocean houses a diverse and productive community of organisms1, 2. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice3, 4, 5, 6, 7. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus8, 9, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean
    corecore