82 research outputs found
Effective equations governing an active poroelastic medium
In this work we consider the spatial homogenization of a coupled transport and fluid-structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation, and transport in an active poroelastic medium. The `active' nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth timescale is strongly separated from other elastic timescales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore-scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection-reaction-diffusion equation. The resultant system of effective equations is then compared to other recent models under a selection of appropriate simplifying asymptotic limits
A Moment-Based Polarimetric Radar Forward Operator for Rain Microphysics
There is growing interest in combining microphysical models and polarimetric radar observations to improve our understanding of storms and precipitation. Mapping model-predicted variables into the radar observational space necessitates a forward operator, which requires assumptions that introduce uncertainties into model-observation comparisons. These include uncertainties arising from the microphysics scheme a priori assumptions of a fixed drop size distribution (DSD) functional form, whereas natural DSDs display far greater variability. To address this concern, this study presents a moment-based polarimetric radar forward operator with no fundamental restrictions on the DSD form by linking radar observables to integrated DSD moments. The forward operator is built upon a dataset of > 200 million realistic DSDs from one-dimensional bin microphysical rain shaft simulations, and surface disdrometer measurements from around the world. This allows for a robust statistical assessment of forward operator uncertainty and quantification of the relationship between polarimetric radar observables and DSD moments. Comparison of "truth" and forward-simulated vertical profiles of the polarimetric radar variables are shown for bin simulations using a variety of moment combinations. Higher-order moments (especially those optimized for use with the polarimetric radar variables: the 6th and 9th) perform better than the lower-order moments (0th and 3rd) typically predicted by many bulk microphysics schemes
Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial
In this work we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example we calibrate the model against experimental data that is subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model
A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments
This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology
The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study
Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusion: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients
Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement
Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Modulation of extracellular proton fluxes from retinal horizontal cells of the catfish by depolarization and glutamate
Self-referencing H(+)-selective microelectrodes were used to measure extracellular proton fluxes from cone-driven horizontal cells isolated from the retina of the catfish (Ictalurus punctatus). The neurotransmitter glutamate induced an alkalinization of the area adjacent to the external face of the cell membrane. The effect of glutamate occurred regardless of whether the external solution was buffered with 1 mM HEPES, 3 mM phosphate, or 24 mM bicarbonate. The AMPA/kainate receptor agonist kainate and the NMDA receptor agonist N-methyl-D-aspartate both mimicked the effect of glutamate. The effect of kainate on proton flux was inhibited by the AMPA/kainate receptor blocker CNQX, and the effect of NMDA was abolished by the NMDA receptor antagonist DAP-5. Metabotropic glutamate receptor agonists produced no alteration in proton fluxes from horizontal cells. Depolarization of cells either by increasing extracellular potassium or directly by voltage clamp also produced an alkalinization adjacent to the cell membrane. The effects of depolarization on proton flux were blocked by 10 microM nifedipine, an inhibitor of L-type calcium channels. The plasmalemma Ca(2+/)H(+) ATPase (PMCA) blocker 5(6)-carboxyeosin also significantly reduced proton flux modulation by glutamate. Our results are consistent with the hypothesis that glutamate-induced extracellular alkalinizations arise from activation of the PMCA pump following increased intracellular calcium entry into cells. This process might help to relieve suppression of photoreceptor neurotransmitter release that results from exocytosed protons from photoreceptor synaptic terminals. Our findings argue strongly against the hypothesis that protons released by horizontal cells act as the inhibitory feedback neurotransmitter that creates the surround portion of the receptive fields of retinal neuron
The Queensland cloud seeding research program
In late 2006 the Queensland government decided to establish the Queensland Cloud Seeding Research Program (QCSRP) in southeastern Queensland to determine the feasibility of cloud seeding as a component of its long-term water management strategy. The Queensland water management strategy recognizes the need for a broad portfolio of water sources to account for the uncertainties and costs associated with each type of source. While it was not expected that cloud seeding would restore southeastern Queensland's water supply levels to pre-drought values, it seemed valuable to determine whether certain types of seeding techniques might impact rainfall and water supplies in the region and whether that impact could be quantified. The project was developed as a collaboration between a number of institutions from Australia, the United States, and South Africa, and included field measurements over the course of two wet seasons. A two-pronged approach was taken to a) conduct a randomized cloud seeding experiment and b) assemble state-of-the-art instrumentation systems to collect data on the complete physical process from cloud formation to seeding to precipitation
- …
