44 research outputs found
A new approach to prevention of knee osteoarthritis: reducing medial load in the contralateral knee
Background. Few if any prevention strategies are available for knee osteoarthritis (OA). In those with symptomatic medial OA, the contralateral knee may be at high risk of disease and a reduction in medial loading in that knee might prevent disease or its progression there. Lateral wedge insoles reduce loading across an affected medial knee but their effect on the contralateral knee is unknown.
Methods: To determine the proportion of persons with medial knee OA who had concurrent medial contralateral OA or developed contralateral medial OA later, we examined knee radiographs from the longitudinal Framingham Osteoarthritis Study. Then, to examine an approach to reducing medial load in the contralateral knee, 51 people from a separate study with painful medial tibiofemoral OA underwent gait analysis wearing bilateral controlled shoes with i) no insoles ii) two types of lateral wedge insoles laterally posted by 5 degrees. Primary outcome was the external knee adduction moment (EKAM) in the contralateral knee. Non-parametric confidence intervals were constructed around the median differences in percentage change in the affected and contralateral sides.
Results: Of Framingham subjects with medial radiograph knee OA, 137/152 (90%) either had concurrent contralateral medial OA or developed it within 10 years. 43/67 (64%) of those with medial symptomatic knee OA had or developed the same disease state in the contralateral knee. Compared to a control shoe, medial loading was reduced substantially on both the affected (median percentage EKAM change =-4.84%; 95% CI -11.33% to -0.65%) and contralateral sides (median EKAM percentage change -9.34% (95% CI -10.57% to -6.45%).
Conclusions: In persons with medial OA, the contralateral knee is also at high risk of medial OA. Bilateral reduction in medial loading in knees by use of strategies such as lateral wedge insoles might not only reduce medial load in affected knees but prevent knee OA or its progression on the contralateral side
Recommended from our members
Multimodal imaging of the self-regulating developing brain
Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development
The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis
BackgroundMalaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.MethodsA systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.ResultsIn total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p 25% to 5 g/dL.ConclusionsPrimaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.Trial registrationThis trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Early Changes in Knee Center of Rotation During Walking After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in Patient-Reported Outcomes
Background: Altered knee kinematics after anterior cruciate ligament injury and reconstruction (ACLR) have been implicated in the development of posttraumatic osteoarthritis (PTOA), leading to poor long-term clinical outcomes. Purpose: This study was conducted to determine (1) whether the average knee center of rotation (KCOR), a multidimensional metric of knee kinematics, of the ACL-reconstructed knee during walking differs from that of the uninjured contralateral knee; (2) whether KCOR changes between 2 and 4 years after surgery; and (3) whether early KCOR changes predict patient-reported outcomes 8 years after ACLR. Study Design: Descriptive laboratory study. Methods: Twenty-six human participants underwent gait analysis with calculation of bilateral KCOR during walking at 2 and 4 years after unilateral ACLR. Knee injury and Osteoarthritis Outcome Score (KOOS) and Lysholm score results were collected at 2, 4, and 8 years after ACLR in 13 of these participants. Results: The ACL-reconstructed knee showed greater medial compartment motion because of pivoting about a more lateral KCOR ( P = .03) than the contralateral knee at 2 years. KCOR became less lateral over time ( P = .047), with values approaching those of the uninjured knee by 4 years ( P = .55). KCOR was also more anterior in the ACL-reconstructed knee at 2 years ( P = .02). Between 2 and 4 years, KCOR moved posteriorly in 16 (62%) and anteriorly in 10 (38%) participants. Increasing the anterior position of KCOR in the ACL-reconstructed knee from 2 to 4 years correlated with worsening clinical outcomes at 4 years (KOOS–Quality of Life, R2 = 0.172) and more strongly at 8 years (Lysholm score, R2 = 0.41; KOOS-Pain, R2 = 0.37; KOOS-Symptoms, R2 = 0.58; and KOOS–Quality of Life, R2 = 0.50). Conclusion: The observed changes to KCOR during walking between 2 and 4 years after ACLR show progressive improvement toward kinematic symmetry over the 2-year follow-up. The correlation between increasingly abnormal kinematics and worsening clinical outcomes years later in a subset of participants provides a potential explanation for the incidence of PTOA after ACLR. </jats:sec
