1,071 research outputs found
Recommended from our members
Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 41 (2014): 8438–8444, doi:10.1002/2014GL061574.Along the continental margins, rivers and submarine groundwater supply nutrients, trace elements, and radionuclides to the coastal ocean, supporting coastal ecosystems and, increasingly, causing harmful algal blooms and eutrophication. While the global magnitude of gauged riverine water discharge is well known, the magnitude of submarine groundwater discharge (SGD) is poorly constrained. Using an inverse model combined with a global compilation of 228Ra observations, we show that the SGD integrated over the Atlantic and Indo-Pacific Oceans between 60°S and 70°N is (12 ± 3) × 1013 m3 yr−1, which is 3 to 4 times greater than the freshwater fluxes into the oceans by rivers. Unlike the rivers, where more than half of the total flux is discharged into the Atlantic, about 70% of SGD flows into the Indo-Pacific Oceans. We suggest that SGD is the dominant pathway for dissolved terrestrial materials to the global ocean, and this necessitates revisions for the budgets of chemical elements including carbon.This work was supported by the Ministry of Oceans and Fisheries, Korea, through the Korea Institute of Marine Science and Technology (KIMST) (20120176) and National Research Foundation (NRF) of Korea (2013R1A2A1A05004343 and 2013R1A1A1058203). Charette and Moore's contributions were supported by the US National Science Foundation through the GEOTRACES project
Results from the Atacama B-mode Search (ABS) Experiment
The Atacama B-mode Search (ABS) is an experiment designed to measure cosmic
microwave background (CMB) polarization at large angular scales (). It
operated from the ACT site at 5190~m elevation in northern Chile at 145 GHz
with a net sensitivity (NEQ) of 41 K. It employed an
ambient-temperature sapphire half-wave plate rotating at 2.55 Hz to modulate
the incident polarization signal and reduce systematic effects. We report here
on the analysis of data from a 2400 deg patch of sky centered at
declination and right ascension . We perform a blind
analysis. After unblinding, we find agreement with the Planck TE and EE
measurements on the same region of sky. We marginally detect polarized dust
emission and give an upper limit on the tensor-to-scalar ratio of (95%
cl) with the equivalent of 100 on-sky days of observation. We also present a
new measurement of the polarization of Tau A and introduce new methods
associated with HWP-based observations.Comment: 38 pages, 11 figure
General Gauge Mediation with Gauge Messengers
We generalize the General Gauge Mediation formalism to allow for the
possibility of gauge messengers. Gauge messengers occur when charged matter
fields of the susy-breaking sector have non-zero F-terms, which leads to
tree-level, susy-breaking mass splittings in the gauge fields. A classic
example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge
messengers. We give a completely general, model independent, current-algebra
based analysis of gauge messenger mediation of susy-breaking to the visible
sector. Characteristic aspects of gauge messengers include enhanced
contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated
already at one loop, and also at two loops, and significant one-loop A-terms,
already at the messenger scale.Comment: 79 pages, 5 figure
Are Tanzanian patients attending public facilities or private retailers more likely to adhere to artemisinin-based combination therapy?
BACKGROUND: Artemisinin combination therapy (ACT) is first-line treatment for malaria in most endemic countries and is increasingly available in the private sector. Most studies on ACT adherence have been conducted in the public sector, with minimal data from private retailers. METHODS: Parallel studies were conducted in Tanzania, in which patients obtaining artemether-lumefantrine (AL) at 40 randomly selected public health facilities and 37 accredited drug dispensing outlets (ADDOs) were visited at home and questioned about doses taken. The effect of sector on adherence, controlling for potential confounders was assessed using logistic regression with a random effect for outlet. RESULTS: Of 572 health facility patients and 450 ADDO patients, 74.5% (95% CI: 69.8, 78.8) and 69.8% (95% CI: 64.6, 74.5), respectively, completed treatment and 46.0% (95% CI: 40.9, 51.2) and 34.8% (95% CI: 30.1, 39.8) took each dose at the correct time ('timely completion'). ADDO patients were wealthier, more educated, older, sought care later in the day, and were less likely to test positive for malaria than health facility patients. Controlling for patient characteristics, the adjusted odds of completed treatment and of timely completion for ADDO patients were 0.65 (95% CI: 0.43, 1.00) and 0.69 (95% CI: 0.47, 1.01) times that of health facility patients. Higher socio-economic status was associated with both adherence measures. Higher education was associated with completed treatment (adjusted OR = 1.68, 95% CI: 1.20, 2.36); obtaining AL in the evening was associated with timely completion (adjusted OR = 0.35, 95% CI: 0.19, 0.64). Factors associated with adherence in each sector were examined separately. In both sectors, recalling correct instructions was positively associated with both adherence measures. In health facility patients, but not ADDO patients, taking the first dose of AL at the outlet was associated with timely completion (adjusted OR = 2.11, 95% CI: 1.46, 3.04). CONCLUSION: When controlling for patient characteristics, there was some evidence that the adjusted odds of adherence for ADDO patients was lower than that for public health facility patients. Better understanding is needed of which patient care aspects are most important for adherence, including the role of effective provision of advice
Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review
Background:
Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p>
Methods/Principal Findings:
We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p>
Conclusions/Significance:
C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p>
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Architecture for the photonic integration of an optical atomic clock
Laboratory optical atomic clocks achieve remarkable accuracy (now counted to 18 digits or more), opening possibilities to explore fundamental physics and enable new measurements. However, their size and use of bulk components prevent them from being more widely adopted in applications that require precision timing. By leveraging silicon-chip photonics for integration and to reduce component size and complexity, we demonstrate a compact optical-clock architecture. Here a semiconductor laser is stabilized to an optical transition in a microfabricated rubidium vapor cell, and a pair of interlocked Kerr-microresonator frequency combs provide fully coherent optical division of the clock laser to generate an electronic 22 GHz clock signal with a fractional frequency instability of one part in 10^(13). These results demonstrate key concepts of how to use silicon-chip devices in future portable and ultraprecise optical clocks
- …
