338 research outputs found
Leading slow roll corrections to the volume of the universe and the entropy bound
We make an extension to recent calculations of the probability density
\rho(V) for the volume of the universe after inflation. Previous results have
been accurate to leading order in the slow roll parameters \epsilon=\dot{H}/H^2
and \eta=\ddot{\phi}/(\dot{\phi} H), and 1/N_c, where H is the Hubble parameter
and N_c is the classical number of e-foldings. Here, we present a modification
which captures effects of order \epsilon N_c, which amounts to letting the
parameters of inflation H and \dot{\phi} depend on the value of the inflaton
\phi. The phase of slow roll eternal inflation can be defined as when the
probability to have an infinite volume is greater than zero. Using this
definition, we study the Laplace transform of \rho(V) numerically to determine
the condition that triggers the transition to eternal inflation. We also study
the average volume analytically and show that it satisfies the universal
volume bound. This bound states that, in any realization of inflation which
ends with a finite volume, an initial volume must grow by less than a factor of
exp(S_{dS}/2), where S_{dS} is the de Sitter (dS) entropy.Comment: 18 pages, 3 figure
Tensors Mesons in AdS/QCD
We explore tensor mesons in AdS/QCD focusing on f2 (1270), the lightest
spin-two resonance in QCD. We find that the f2 mass and the partial width for
f2 -> gamma gamma are in very good agreement with data. In fact, the
dimensionless ratio of these two quantities comes out within the current
experimental bound. The result for this ratio depends only on Nc and Nf, and
the quark and glueball content of the operator responsible for the f2; more
importantly, it does not depend on chiral symmetry breaking and so is both
independent of much of the arbitrariness of AdS/QCD and completely out of reach
of chiral perturbation theory. For comparison, we also explore f2 -> pi pi,
which because of its sensitivity to the UV corrections has much more
uncertainty. We also calculate the masses of the higher spin resonances on the
Regge trajectory of the f2, and find they compare favorably with experiment.Comment: 21 pages, 1 figure; Li's correcte
Unraveling the complexity of protein backbone dynamics with combined 13C and 15N solid-state NMR relaxation measurements
Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce 13C spin–lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of 13C′ R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz 1H Larmor frequencies and compare them to 13C′ R1, 15N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when 15N data is used alone. We also discuss how internal motions characterized by different time scales contribute to 15N and 13C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution
Direct signatures of the formation time of galaxies
We show that it is possible to directly measure the formation time of
galaxies using large-scale structure. In particular, we show that the
large-scale distribution of galaxies is sensitive to whether galaxies form over
a narrow period of time before their observed times, or are formed over a time
scale on the order of the age of the Universe. Along the way, we derive simple
recursion relations for the perturbative terms of the most general bias
expansion for the galaxy density, thus fully extending the famous dark-matter
recursion relations to generic tracers.Comment: 6+2 pages, 1 figure, ancillary file include
Development of a Research Agenda for the Management of Metastatic Colorectal Cancer: Proceedings from a Multidisciplinary Research Consensus Panel
Anomalous Dimensions and Non-Gaussianity
We analyze the signatures of inflationary models that are coupled to strongly
interacting field theories, a basic class of multifield models also motivated
by their role in providing dynamically small scales. Near the squeezed limit of
the bispectrum, we find a simple scaling behavior determined by operator
dimensions, which are constrained by the appropriate unitarity bounds.
Specifically, we analyze two simple and calculable classes of examples:
conformal field theories (CFTs), and large-N CFTs deformed by relevant
time-dependent double-trace operators. Together these two classes of examples
exhibit a wide range of scalings and shapes of the bispectrum, including nearly
equilateral, orthogonal and local non-Gaussianity in different regimes. Along
the way, we compare and contrast the shape and amplitude with previous results
on weakly coupled fields coupled to inflation. This signature provides a
precision test for strongly coupled sectors coupled to inflation via irrelevant
operators suppressed by a high mass scale up to 1000 times the inflationary
Hubble scale.Comment: 40 pages, 10 figure
- …
