38 research outputs found

    The Arecibo Detection of the Coolest Radio-flaring Brown Dwarf

    Full text link
    Radio detection provides unique means to measure and study magnetic fields of the coolest brown dwarfs. Previous radio surveys have observed quiescent and flaring emission from brown dwarfs down to spectral type L3.5, but only upper limits have been established for even cooler objects. We report the detection of sporadic, circularly polarized flares from the T6.5 dwarf, 2MASS J1047+21, with the Arecibo radio telescope at 4.75 GHz. This is by far the coolest brown dwarf yet detected at radio frequencies. The fact that such an object is capable of generating observable, coherent radio emission, despite its very low, ~900 K temperature, demonstrates the feasibility of studies of brown dwarfs in the meagerly explored LTY spectral range, using radio detection as a tool.Comment: 6 pages, 2 figures. Accepted for publication in ApJ

    ROME IV. The Arecibo Search for Substellar Magnetospheric Radio Emissions in Purported Exoplanet-Hosting Systems at 5 GHz

    Full text link
    Plasma flow-obstacle interactions, such as those between an exoplanet's magnetosphere and the host star's stellar wind, may lead to detectable radio emissions. Despite many attempts to detect magnetospheric (auroral) radio emissions from exoplanets, a reproducible, unambiguous detection remains elusive. This fourth paper of the ROME (Radio Observations of Magnetized Exoplanets) series presents the results of a targeted radio survey of nine nearby systems that host exoplanet, brown dwarf, or low-mass-stellar companions conducted with the Arecibo radio telescope at \sim5 GHz. This search for magnetospheric radio emissions has the greatest sensitivity (\sim1 mJy during <<1 s integration times) and collected full Stokes parameters over the largest simultaneous bandpass of any survey to date. It is also the first survey to search for radio emission from brown dwarfs of spectral class Y, which may illuminate open questions regarding their magnetism, interior and atmospheric structure, and formation histories. No magnetospheric radio emissions from substellar companions were detected. These results are examined within the context of recent theoretical work on plasma flow-obstacle interactions, and radio emissions observed from the solar system planets and ultracool dwarfs.Comment: 18 pages, 4 tables, 2 figure

    Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter

    Get PDF
    We report on the Hubble Space Telescope program to observe periodic comet 9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus special issue on Deep Impac

    Titania-doped tantala/silica coatings for gravitational-wave detection

    Get PDF
    Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors
    corecore