305 research outputs found

    The growth and hydrodynamic collapse of a protoplanet envelope

    Full text link
    We have conducted three-dimensional self-gravitating radiation hydrodynamical models of gas accretion onto high mass cores (15-33 Earth masses) over hundreds of orbits. Of these models, one case accretes more than a third of a Jupiter mass of gas, before eventually undergoing a hydrodynamic collapse. This collapse causes the density near the core to increase by more than an order of magnitude, and the outer envelope to evolve into a circumplanetary disc. A small reduction in the mass within the Hill radius (R_H) accompanies this collapse as a shock propagates outwards. This collapse leads to a new hydrostatic equilibrium for the protoplanetary envelope, at which point 97 per cent of the mass contained within the Hill radius is within the inner 0.03 R_H which had previously contained less than 40 per cent. Following this collapse the protoplanet resumes accretion at its prior rate. The net flow of mass towards this dense protoplanet is predominantly from high latitudes, whilst at the outer edge of the circumplanetary disc there is net outflow of gas along the midplane. We also find a turnover of gas deep within the bound envelope that may be caused by the establishment of convection cells.Comment: 16 pages, 16 figures. Accepted for publication in MNRA

    Reactive-Atom Scattering from Liquid Crystals at the Liquid-Vacuum Interface : [C12mim][BF4] and 4-Cyano-4′-Octylbiphenyl (8CB)

    Get PDF
    Two complementary approaches were used to study the liquid-vacuum interface of the liquid-crystalline ionic liquid 1-dodecyl-3-methylimidazolium tetrafluoroborate ([C12mim][BF4]) in the smectic A (SmA) and isotropic phases. O atoms with two distinct incident translational energies were scattered from the surface of [C12mim][BF4]. Angle-dependent time-of-flight distributions and OH yields, respectively, were recorded from high- and low-energy O atoms. There were no significant changes in the measurements using either approach, nor the properties derived from them, accompanying the transition from the SmA to the isotropic phase. This indicates that the surface structure of [C12mim][BF4] remains essentially unchanged across the phase boundary, implying that the bulk order and surface structure are not strongly correlated for this material. This effect is ascribed to the strong propensity for the outer surfaces of ionic liquids to be dominated by alkyl chains, over an underlying layer rich in anions and cation head groups, whether or not the bulk material is a liquid crystal. In a comparative study, the OH yield from the surface of the liquid crystal, 8CB, was found to be affected by the bulk order, showing a surprising step increase at the SmA-nematic transition temperature, whose origin is the subject of speculation

    Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion

    Full text link
    The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {\mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure

    The representation of surface temperature trends in C3S seasonal forecast systems

    Get PDF
    Funding: M.P., D.J.B., and A.W.: EU Horizon 2020, grant agreement 776613. J.S.: NERC (Grant Number(s): NE/S007164/1) and Met Office. J.F.L.: Met Office Hadley Centre Climate Programme funded through the UK Government Departments, BEIS, and Defra.We assess near-surface temperature and sea surface temperature trends in 8 seasonal forecast systems in the Copernicus Climate Change Service archive, over the common hindcast period (1993–2016). All but one of the systems show a faster warming of the global-mean, relative to observations in both boreal summer and winter seasons. On average, systems warm at 0.21 K/decade and 0.22 K/decade for winter and summer, respectively, compared to 0.17 K/decade and 0.19 K/decade for ERA5. In summer, forecast systems tend to show an excessive warming of the tropical Pacific, tropical Atlantic and southern mid-latitudes, which contributes to the difference in global warming rates compared to observations. In contrast, greater warming in the northern mid-latitudes contributes most to trend differences for winter. The faster warming of models over this period has important implications for seasonal forecasts of future global and regional temperature and suggests further work is required to understand this bias.Peer reviewe

    Divergent Transcriptional Regulatory Logic at the Intersection of Tissue Growth and Developmental Patterning

    Get PDF
    The Yorkie/Yap transcriptional coactivator is a well-known regulator of cellular proliferation in both invertebrates and mammals. As a coactivator, Yorkie (Yki) lacks a DNA binding domain and must partner with sequence-specific DNA binding proteins in the nucleus to regulate gene expression; in Drosophila, the developmental regulators Scalloped (Sd) and Homothorax (Hth) are two such partners. To determine the range of target genes regulated by these three transcription factors, we performed genome-wide chromatin immunoprecipitation experiments for each factor in both the wing and eye-antenna imaginal discs. Strong, tissue-specific binding patterns are observed for Sd and Hth, while Yki binding is remarkably similar across both tissues. Binding events common to the eye and wing are also present for Sd and Hth; these are associated with genes regulating cell proliferation and “housekeeping” functions, and account for the majority of Yki binding. In contrast, tissue-specific binding events for Sd and Hth significantly overlap enhancers that are active in the given tissue, are enriched in Sd and Hth DNA binding sites, respectively, and are associated with genes that are consistent with each factor's previously established tissue-specific functions. Tissue-specific binding events are also significantly associated with Polycomb targeted chromatin domains. To provide mechanistic insights into tissue-specific regulation, we identify and characterize eye and wing enhancers of the Yki-targeted bantam microRNA gene and demonstrate that they are dependent on direct binding by Hth and Sd, respectively. Overall these results suggest that both Sd and Hth use distinct strategies – one shared between tissues and associated with Yki, the other tissue-specific, generally Yki-independent and associated with developmental patterning – to regulate distinct gene sets during development

    SELEX-sequencing

    Get PDF
    UROP report and poster, Spring 2016, BiologyUndergraduate Research Opportunities Program, University of Minnesota DuluthRyan, Courtney; Lacher, Sarah E; Slattery, Matthew. (2016). SELEX-sequencing. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/187377

    Sequence Determinants of Nrf2 Regulatory Output

    Get PDF
    UROP paper, 2015, Chemistry and BiochemistryUndergraduate Research Opportunities Program, University of Minnesota DuluthRyan, Courtney; Lacher, Sarah E.; Slattery, Matthew. (2015). Sequence Determinants of Nrf2 Regulatory Output. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/187393

    Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot

    Full text link
    Hybrid quantum information devices that combine disparate physical systems interacting through photons offer the promise of combining low-loss telecommunications wavelength transmission with high fidelity visible wavelength storage and manipulation. The realization of such systems requires control over the waveform of single photons to achieve spectral and temporal matching. Here, we experimentally demonstrate the simultaneous wavelength translation and amplitude modulation of single photons generated by a quantum dot emitting near 1300 nm with an exponentially-decaying waveform (lifetime \approx1.5 ns). Quasi-phase-matched sum-frequency generation with a pulsed 1550 nm laser creates single photons at 710 nm with a controlled amplitude modulation at 350 ps timescales.Comment: 5 pages, 4 figure
    corecore