32 research outputs found
Aggressive Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing using Active Vision
We address one of the main challenges towards autonomous quadrotor flight in
complex environments, which is flight through narrow gaps. While previous works
relied on off-board localization systems or on accurate prior knowledge of the
gap position and orientation, we rely solely on onboard sensing and computing
and estimate the full state by fusing gap detection from a single onboard
camera with an IMU. This problem is challenging for two reasons: (i) the
quadrotor pose uncertainty with respect to the gap increases quadratically with
the distance from the gap; (ii) the quadrotor has to actively control its
orientation towards the gap to enable state estimation (i.e., active vision).
We solve this problem by generating a trajectory that considers geometric,
dynamic, and perception constraints: during the approach maneuver, the
quadrotor always faces the gap to allow state estimation, while respecting the
vehicle dynamics; during the traverse through the gap, the distance of the
quadrotor to the edges of the gap is maximized. Furthermore, we replan the
trajectory during its execution to cope with the varying uncertainty of the
state estimate. We successfully evaluate and demonstrate the proposed approach
in many real experiments. To the best of our knowledge, this is the first work
that addresses and achieves autonomous, aggressive flight through narrow gaps
using only onboard sensing and computing and without prior knowledge of the
pose of the gap
Thrust Mixing, Saturation, and Body-Rate Control for Accurate Aggressive Quadrotor Flight
Quadrotors are well suited for executing fast maneuvers with high accelerations but they are still unable to follow a fast trajectory with centimeter accuracy without iteratively learning it beforehand. In this paper, we present a novel body-rate controller and an iterative thrust-mixing scheme, which improve the trajectory-tracking performance without requiring learning and reduce the yaw control error of a quadrotor, respectively. Furthermore, to the best of our knowledge, we present the first algorithm to cope with motor saturations smartly by prioritizing control inputs which are relevant for stabilization and trajectory tracking. The presented body-rate controller uses LQR-control methods to consider both the body rate and the single motor dynamics, which reduces the overall trajectory-tracking error while still rejecting external disturbances well. Our iterative thrust-mixing scheme computes the four rotor thrusts given the inputs from a position-control pipeline. Through the iterative computation, we are able to consider a varying ratio of thrust and drag torque of a single propeller over its input range, which allows applying the desired yaw torque more precisely and hence reduces the yaw-control error. Our prioritizing motor-saturation scheme improves stability and robustness of a quadrotor's flight and may prevent unstable behavior in case of motor saturations. We demonstrate the improved trajectory tracking, yaw-control, and robustness in case of motor saturations in real-world experiments with a quadrotor
Radiative and isospin-violating decays of Ds mesons in the hadrogenesis conjecture
The masses and decays of the scalar D_{s0}^*(2317) and axial-vector
D_{s1}^*(2460) charmed strange mesons are calculated consistently in the
hadrogenesis conjecture. These mesons decay either strongly into the
isospin-violating pi^0 D_s and pi^0 D_s^* channels or electromagnetically. They
are generated by coupled-channel dynamics based on the leading order chiral
Lagrangian. The effect of chiral corrections to chiral order Q_\chi^2 is
investigated. We show that taking into account large-N_c relations to determine
the strength of these correction terms implies a measurable signal for an
exotic axial-vector state in the eta D* invariant mass distribution. The
one-loop contribution to the electromagnetic decay amplitudes of scalar and
axial-vector states is calculated. The Lagrangian describing electromagnetic
interactions is obtained by gauging the chiral Lagrangian for hadronic
interactions and adding gauge-invariant correction terms to chiral order
Q_chi^2. In addition the role of light vector meson degrees of freedom is
explored. We confront our results with measured branching ratios. Once the
light vector mesons are included, a natural explanation of all radiative decay
parameters is achieved.Comment: 102 pages, 7 figures, further improved presentatio
Global hypomethylation in childhood asthma identified by genome‐wide DNA‐methylation sequencing preferentially affects enhancer regions
Background
Childhood asthma is a result of a complex interaction of genetic and environmental components causing epigenetic and immune dysregulation, airway inflammation and impaired lung function. Although different microarray based EWAS studies have been conducted, the impact of epigenetic regulation in asthma development is still widely unknown. We have therefore applied unbiased whole genome bisulfite sequencing (WGBS) to characterize global DNA-methylation profiles of asthmatic children compared to healthy controls.
Methods
Peripheral blood samples of 40 asthmatic and 42 control children aged 5–15 years from three birth cohorts were sequenced together with paired cord blood samples. Identified differentially methylated regions (DMRs) were categorized in genotype-associated, cell-type-dependent, or prenatally primed. Network analysis and subsequent natural language processing of DMR-associated genes was complemented by targeted analysis of functional translation of epigenetic regulation on the transcriptional and protein level.
Results
In total, 158 DMRs were identified in asthmatic children compared to controls of which 37% were related to the eosinophil content. A global hypomethylation was identified affecting predominantly enhancer regions and regulating key immune genes such as IL4, IL5RA, and EPX. These DMRs were confirmed in n = 267 samples and could be linked to aberrant gene expression. Out of the 158 DMRs identified in the established phenotype, 56 were perturbed already at birth and linked, at least in part, to prenatal influences such as tobacco smoke exposure or phthalate exposure.
Conclusion
This is the first epigenetic study based on whole genome sequencing to identify marked dysregulation of enhancer regions as a hallmark of childhood asthma
Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons
Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise. © 2015
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos φh, cos 2φh and sin φh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cos φh and cos 2φh modulations show strong kinematic dependencies both for positive and negative hadrons. © 2014 CERN for the benefit of the COMPASS Collaboration
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos φh, cos 2φh and sin φh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cos φh and cos 2φh modulations show strong kinematic dependencies both for positive and negative hadrons. © 2014 CERN for the benefit of the COMPASS Collaboration
Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories
International audienceIn this paper, we prove that the dynamical model of a quadrotor subject to linear rotor drag effects is differentially flat in its position and heading. We use this property to compute feed-forward control terms directly from a reference trajectory to be tracked. The obtained feed-forward terms are then used in a cascaded, nonlinear feedback control law that enables accurate agile flight with quadrotors. Compared to state-of-the-art control methods, which treat the rotor drag as an unknown disturbance, our method reduces the trajectory tracking error significantly. Finally, we present a method based on a gradient-free optimization to identify the rotor drag coefficients, which are required to compute the feed-forward control terms. The new theoretical results are thoroughly validated trough extensive comparative experiments
