1,664 research outputs found
A nodal domain theorem and a higher-order Cheeger inequality for the graph -Laplacian
We consider the nonlinear graph -Laplacian and its set of eigenvalues and
associated eigenfunctions of this operator defined by a variational principle.
We prove a nodal domain theorem for the graph -Laplacian for any .
While for the bounds on the number of weak and strong nodal domains are
the same as for the linear graph Laplacian (), the behavior changes for
. We show that the bounds are tight for as the bounds are
attained by the eigenfunctions of the graph -Laplacian on two graphs.
Finally, using the properties of the nodal domains, we prove a higher-order
Cheeger inequality for the graph -Laplacian for . If the eigenfunction
associated to the -th variational eigenvalue of the graph -Laplacian has
exactly strong nodal domains, then the higher order Cheeger inequality
becomes tight as
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Adaptive gradient methods have become recently very popular, in particular as
they have been shown to be useful in the training of deep neural networks. In
this paper we have analyzed RMSProp, originally proposed for the training of
deep neural networks, in the context of online convex optimization and show
-type regret bounds. Moreover, we propose two variants SC-Adagrad and
SC-RMSProp for which we show logarithmic regret bounds for strongly convex
functions. Finally, we demonstrate in the experiments that these new variants
outperform other adaptive gradient techniques or stochastic gradient descent in
the optimization of strongly convex functions as well as in training of deep
neural networks.Comment: ICML 2017, 16 pages, 23 figure
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Adaptive gradient methods have become recently very popular, in particular as
they have been shown to be useful in the training of deep neural networks. In
this paper we have analyzed RMSProp, originally proposed for the training of
deep neural networks, in the context of online convex optimization and show
-type regret bounds. Moreover, we propose two variants SC-Adagrad and
SC-RMSProp for which we show logarithmic regret bounds for strongly convex
functions. Finally, we demonstrate in the experiments that these new variants
outperform other adaptive gradient techniques or stochastic gradient descent in
the optimization of strongly convex functions as well as in training of deep
neural networks.Comment: ICML 2017, 16 pages, 23 figure
Loss Functions for Top-k Error: Analysis and Insights
In order to push the performance on realistic computer vision tasks, the
number of classes in modern benchmark datasets has significantly increased in
recent years. This increase in the number of classes comes along with increased
ambiguity between the class labels, raising the question if top-1 error is the
right performance measure. In this paper, we provide an extensive comparison
and evaluation of established multiclass methods comparing their top-k
performance both from a practical as well as from a theoretical perspective.
Moreover, we introduce novel top-k loss functions as modifications of the
softmax and the multiclass SVM losses and provide efficient optimization
schemes for them. In the experiments, we compare on various datasets all of the
proposed and established methods for top-k error optimization. An interesting
insight of this paper is that the softmax loss yields competitive top-k
performance for all k simultaneously. For a specific top-k error, our new top-k
losses lead typically to further improvements while being faster to train than
the softmax.Comment: In Computer Vision and Pattern Recognition (CVPR), 201
- …
