192 research outputs found
Spectroscopy of mechanical dissipation in micro-mechanical membranes
We measure the frequency dependence of the mechanical quality factor (Q) of
SiN membrane oscillators and observe a resonant variation of Q by more than two
orders of magnitude. The frequency of the fundamental mechanical mode is tuned
reversibly by up to 40% through local heating with a laser. Several distinct
resonances in Q are observed that can be explained by coupling to membrane
frame modes. Away from the resonances, the background Q is independent of
frequency and temperature in the measured range.Comment: 4 pages, 5 figure
Cavity-enhanced Raman Microscopy of Individual Carbon Nanotubes
Raman spectroscopy reveals chemically specific information and provides
label-free insight into the molecular world. However, the signals are
intrinsically weak and call for enhancement techniques. Here, we demonstrate
Purcell enhancement of Raman scattering in a tunable high-finesse microcavity,
and utilize it for molecular diagnostics by combined Raman and absorption
imaging. Studying individual single-wall carbon nanotubes, we identify crucial
structural parameters such as nanotube radius, electronic structure and
extinction cross-section. We observe a 320-times enhanced Raman scattering
spectral density and an effective Purcell factor of 6.2, together with a
collection efficiency of 60%. Potential for significantly higher enhancement,
quantitative signals, inherent spectral filtering and absence of intrinsic
background in cavity-vacuum stimulated Raman scattering render the technique a
promising tool for molecular imaging. Furthermore, cavity-enhanced Raman
transitions involving localized excitons could potentially be used for gaining
quantum control over nanomechanical motion and open a route for molecular
cavity optomechanics
Secukinumab versus adalimumab for psoriatic arthritis: comparative effectiveness up to 48 weeks using a matching-adjusted indirect comparison
Secukinumab and adalimumab are approved for adults with active psoriatic arthritis (PsA). In the absence of direct randomized controlled trial (RCT) data, matching-adjusted indirect comparison can estimate the comparative effectiveness in anti-tumor necrosis factor (TNF)-naïve populations. Individual patient data from the FUTURE 2 RCT (secukinumab vs. placebo; N = 299) were adjusted to match baseline characteristics of the ADEPT RCT (adalimumab vs. placebo; N = 313). Logistic regression determined adjustment weights for age, body weight, sex, race, methotrexate use, psoriasis affecting ≥ 3% of body surface area, Psoriasis Area and Severity Index score, Health Assessment Questionnaire Disability Index score, presence of dactylitis and enthesitis, and previous anti-TNF therapy. Recalculated secukinumab outcomes were compared with adalimumab outcomes at weeks 12 (placebo-adjusted), 16, 24, and 48 (nonplacebo-adjusted). After matching, the effective sample size for FUTURE 2 was 101. Week 12 American College of Rheumatology (ACR) response rates were not significantly different between secukinumab and adalimumab. Week 16 ACR 20 and 50 response rates were higher for secukinumab 150 mg than for adalimumab (P = 0.017, P = 0.033), as was ACR 50 for secukinumab 300 mg (P = 0.030). Week 24 ACR 20 and 50 were higher for secukinumab 150 mg than for adalimumab (P = 0.001, P = 0.019), as was ACR 20 for secukinumab 300 mg (P = 0.048). Week 48 ACR 20 was higher for secukinumab 150 and 300 mg than for adalimumab (P = 0.002, P = 0.027), as was ACR 50 for secukinumab 300 mg (P = 0.032). In our analysis, patients with PsA receiving secukinumab were more likely to achieve higher ACR responses through 1 year (weeks 16-48) than those treated with adalimumab. Although informative, these observations rely on a subgroup of patients from FUTURE 2 and thus should be considered interim until the ongoing head-to-head RCT EXCEED can validate these findings. Novartis Pharma AG
Die Ästhetik des Menschen:Ästhetisches Erleben, Attraktivität, Schönheit und Liebe
Diese Arbeit untersucht als Hauptfrage, wie Menschen ästhetisch erlebt werden, befasst sich aber auch mit anderen verwandten Themen wie Schönheit und Liebe.
Nach dem einleitenden Ersten Kapitel legt das Zweite Kapitel Grundlagen in Form einer allgemeinen Theorie von ästhetischem Erleben und Eigenschaften.
Das Dritte Kapitel klärt die Hauptfrage, indem es drei Bereiche betrachtet: äußere Erscheinung, seelisches Innenleben und Gefühlsausdruck. Es werden jeweils ästhetische Eigenschaften im Sinne des Zweiten Kapitels gesucht.
Das Vierte Kapitel prüft dann, welche dieser Eigenschaften von allen Menschen gleich erlebt werden und welche nicht.
Das Fünfte Kapitel untersucht die Schönheit des Menschen, zuerst den allgemeinen Begriff von Schönheit, dann die Anwendung auf den Menschen.
Im Sechsten Kapitel geht es um die Liebe bezogen auf Ästhetisches: Nach einer Betrachtung von Liebe allgemein wird eine spezifisch ästhetische Liebe herausgearbeitet.
Das Siebte Kapitel ist Zusammenfassung und Ausblick. <br/
A scanning cavity microscope
Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1, 700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm(2);we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems
Smoking and health-related quality of life in English general population: Implications for economic evaluations
Copyright @ 2012 Vogl et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Little is known as to how health-related quality of life (HRQoL) when measured by generic instruments such as EQ-5D differ across smokers, ex-smokers and never-smokers in the general population; whether the overall pattern of this difference remain consistent in each domain of HRQoL; and what implications this variation, if any, would have for economic evaluations of tobacco control interventions. Methods: Using the 2006 round of Health Survey for England data (n = 13,241), this paper aims to examine the impact of smoking status on health-related quality of life in English population. Depending upon the nature of the EQ-5D data (i.e. tariff or domains), linear or logistic regression models were fitted to control for biology, clinical conditions, socio-economic background and lifestyle factors that an individual may have regardless of their smoking status. Age- and gender-specific predicted values according to smoking status are offered as the potential 'utility' values to be used in future economic evaluation models. Results: The observed difference of 0.1100 in EQ-5D scores between never-smokers (0.8839) and heavy-smokers (0.7739) reduced to 0.0516 after adjusting for biological, clinical, lifestyle and socioeconomic conditions. Heavy-smokers, when compared with never-smokers, were significantly more likely to report some/severe problems in all five domains - mobility (67%), self-care (70%), usual activity (42%), pain/discomfort (46%) and anxiety/depression (86%) -. 'Utility' values by age and gender for each category of smoking are provided to be used in the future economic evaluations. Conclusion: Smoking is significantly and negatively associated with health-related quality of life in English general population and the magnitude of this association is determined by the number of cigarettes smoked. The varying degree of this association, captured through instruments such as EQ-5D, may need to be fed into the design of future economic evaluations where the intervention being evaluated affects (e.g. tobacco control) or is affected (e.g. treatment for lung cancer) by individual's (or patients') smoking status
Transverse-mode coupling effects in scanning cavity microscopy
Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with high resolution imaging. To assess the limits of this technique originating from background variations, we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic background patterns with high spatial frequency. We show in detailed measurements that the localized structures originate from resonant transverse-mode coupling and arise from the topography of the planar mirror surface, in particular its local curvature and gradient. We further examine the background patterns and find that they derive from non-resonant mode coupling, and we attribute it to the micro roughness of the mirror. Our measurements and analysis elucidate the impact of imperfect mirrors and reveal the influence of their microscopic topography. This is crucial for the interpretation of scanning cavity images, and could provide relevant insight for precision applications such as gravitational wave detectors, laser gyroscopes, and reference cavities
Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity
The dynamics of nanosystems in solution contain a wealth of information with
relevance for diverse fields ranging from materials science to biology and
biomedical applications. When nanosystems are marked with fluorophores or
strong scatterers, it is possible to track their position and reveal internal
motion with high spatial and temporal resolution. However, markers can be
toxic, expensive, or change the object's intrinsic properties. Here, we
simultaneously measure dispersive frequency shifts of three transverse modes of
a high-finesse microcavity to obtain the three-dimensional path of unlabeled
SiO nanospheres with s temporal and down to nm
spatial resolution. This allows us to quantitatively determine properties such
as the polarizability, hydrodynamic radius, and effective refractive index. The
fiber-based cavity is integrated in a direct-laser-written microfluidic device
that enables the precise control of the fluid with ultra-small sample volumes.
Our approach enables quantitative nanomaterial characterization and the
analysis of biomolecular motion at high bandwidth.Comment: 7 pages, 3 figure
- …
