473 research outputs found
Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights
In recent years, Quantum Computing (QC) has progressed to the point where
small working prototypes are available for use. Termed Noisy Intermediate-Scale
Quantum (NISQ) computers, these prototypes are too small for large benchmarks
or even for Quantum Error Correction, but they do have sufficient resources to
run small benchmarks, particularly if compiled with optimizations to make use
of scarce qubits and limited operation counts and coherence times. QC has not
yet, however, settled on a particular preferred device implementation
technology, and indeed different NISQ prototypes implement qubits with very
different physical approaches and therefore widely-varying device and machine
characteristics.
Our work performs a full-stack, benchmark-driven hardware-software analysis
of QC systems. We evaluate QC architectural possibilities, software-visible
gates, and software optimizations to tackle fundamental design questions about
gate set choices, communication topology, the factors affecting benchmark
performance and compiler optimizations. In order to answer key cross-technology
and cross-platform design questions, our work has built the first top-to-bottom
toolflow to target different qubit device technologies, including
superconducting and trapped ion qubits which are the current QC front-runners.
We use our toolflow, TriQ, to conduct {\em real-system} measurements on 7
running QC prototypes from 3 different groups, IBM, Rigetti, and University of
Maryland. From these real-system experiences at QC's hardware-software
interface, we make observations about native and software-visible gates for
different QC technologies, communication topologies, and the value of
noise-aware compilation even on lower-noise platforms. This is the largest
cross-platform real-system QC study performed thus far; its results have the
potential to inform both QC device and compiler design going forward.Comment: Preprint of a publication in ISCA 201
Directed transport born from chaos in asymmetric antidot structures
It is shown that a polarized microwave radiation creates directed transport
in an asymmetric antidot superlattice in a two dimensional electron gas. A
numerical method is developed that allows to establish the dependence of this
ratchet effect on several parameters relevant for real experimental studies. It
is applied to the concrete case of a semidisk Galton board where the electron
dynamics is chaotic in the absence of microwave driving. The obtained results
show that high currents can be reached at a relatively low microwave power.
This effect opens new possibilities for microwave control of transport in
asymmetric superlattices.Comment: 8 pages, 10 figure
Background-free detection and mixed-species crystals in micro- and macroscopic ion-traps for scalable QIP
Scalability and the implementation of fault tolerant quantum gates are the two main challenges which must be overcome in order to unlock the vast potential of quantum computing. This thesis describes work with calcium ions trapped in both microscopic and macroscopic linear Paul traps addressing both of these issues. We describe the assembly of a microstructured multi-zone ion trap which forms part of our group's contribution to the European "Microtrap" collaboration. We report the successful trapping of ions and characterization of the trap as well as a measurement of the heating rate. In miniaturized trap structures such as this one, background scattered light from the cooling beam causes difficulties. We introduce and demonstrate experimentally two techniques to overcome this problem. The first achieves background-free detection of ions using different repumping methods to enable the filtering out of the excitation wavelength. The second makes possible background-free readout of trapped ion qubits by separating in time the excitation and detection steps The second half of the thesis describes our experimental efforts towards implementing a two-qubit entangling gate with a mixed-species crystal. We describe the setup and characterization of a new macroscopic trap including the trapping and coherent manipulation of the internal states of both 40Ca+ and 43Ca+ ions. We accomplish the simultaneous independent readout of two qubits implemented in a 40Ca+ - 43Ca+ ion pair. We also present the setup and characterization of two injection-locked frequency-doubled Raman lasers and demonstrate coherent manipulation as well as a measurement of the off-resonant photon scattering error they introduce. Finally, we use them to achieve sideband cooling to the motional ground state of a mixed species ion crystal
Brownian motors
In systems possessing a spatial or dynamical symmetry breaking thermal
Brownian motion combined with unbiased, non-equilibrium noise gives rise to a
channelling of chance that can be used to exercise control over systems at the
micro- and even on the nano-scale. This theme is known as ``Brownian motor''
concept. The constructive role of (the generally overdamped) Brownian motion is
exemplified for a noise-induced transport of particles within various set-ups.
We first present the working principles and characteristics with a
proof-of-principle device, a diffusive temperature Brownian motor. Next, we
consider very recent applications based on the phenomenon of signal mixing. The
latter is particularly simple to implement experimentally in order to optimize
and selectively control a rich variety of directed transport behaviors. The
subtleties and also the potential for Brownian motors operating in the quantum
regime are outlined and some state-of-the-art applications, together with
future roadways, are presented.Comment: 20 pages, 9 figures (slightly changed version
Spin-Orbit Based Coherent Spin Ratchets
The concept of ratchets, driven asymmetric periodic structures giving rise to
directed particle flow, has recently been generalized to a quantum ratchet
mechanism for spin currents mediated through spin-orbit interaction. Here we
consider such systems in the coherent mesoscopic regime and generalize the
proposal of a minimal spin ratchet model based on a non-interacting clean
quantum wire with two transverse channels by including disorder and by
self-consistently treating the charge redistribution in the nonlinear
(adiabatic) ac-driving regime. Our Keldysh-Green function based quantum
transport simulations show that the spin ratchet mechanism is robust and
prevails for disordered, though non-diffusive, mesoscopic structures. Extending
the two-channel to the multi-channel case does not increase the net ratchet
spin current efficiency but, remarkably, yields a dc spin transmission
increasing linearly with channel number.Comment: 23 pages, 7 figures; to be published in Chemical Physic
Photogalvanic current in artificial asymmetric nanostructures
We develop a theoretic description of the photogalvanic current induced by a
high frequency radiation in asymmetric nanostructures and show that it
describes well the results of numerical simulations. Our studies allow to
understand the origin of the electronic ratchet transport in such systems and
show that they can be used for creation of new types of detectors operating at
room temperature in a terahertz radiation range.Comment: 11 pages, 9 figs, EPJ latex styl
Report summarizing all information from WP2 relevant for the creation of an Environmental Best Practice for offshore CCS sites
A model of an electrochemical flow cell with porous layer
In this paper we discuss three different mathematical models for fluid-porous interfaces in a simple channel geometry that appears e.g. in thin-layer channel flow cells. Here the difficulties arise from the possibly different orders of the corresponding differential operators in the different domains. A finite volume discretization of this model allows to calculate the limiting current of the H_2 oxidation in a porous electrode with platinum catalyst particles
Early-life adversity selectively impairs α2-GABAA receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine
Haplotypes of the Gabra2 gene encoding the α2 subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviorally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitization upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.</p
- …
