303 research outputs found
Climatic warming: a trigger for glacial iceberg surges (‘Heinrich events’) in the North Atlantic?
In the present-day western North Atlantic, icebergs can be observed off north-east Canada, drifting south along the coast in the cold Labrador Current. Normally they melt in the area off Newfoundland where they reach warmer waters. Most of these icebergs originate from calving glaciers in West Greenland or in the Canadian Arctic. Jakobshavn Isbræ in West Greenland (Fig. 1) deserves particular mention as it is the fastest known ice stream in the world draining 6–7% of the entire Greenland ice sheet (Joughin et al. 2004). Southward drifting icebergs also occur along the east coast of Greenland (Fig. 2), but most of these melt when they approach the southernmost tip of Greenland. The iceberg limit in the north-western Atlantic varies from year to year, but isolated icebergs may reach far south of Newfoundland (Fig. 1). Many icebergs carry a load of rock debris and soil incorporated by their parent glacier that leads to deposition of ice rafted debris on the deep ocean sea floor. In the past decade the Geological Survey of Denmark and Greenland (GEUS) has initiated marine geological investigations in the North Atlantic on the late Quaternary variability of North Atlantic thermohaline circulation, with special focus on the possible link between climate change and variations in deep-water flow intensity (Kuijpers et al. 1998, 2002, 2003). Moreover, glaciological projects in Greenland undertaken by GEUS have significantly contributed to the current debate of present-day climatic warming. Notably work carried out in East Greenland fjords has provided crucial information relevant for the study of glacial iceberg surges in the North Atlantic (Reeh et al. 1999). These surges are suggested to have been triggered under the influence of extreme cold climate conditions, but the actual trigger mechanism involved has been a matter of much debate. Evidence from modern glacier process studies referred to above, combined with results of recent studies in the North Atlantic carried out by GEUS and partner institutions, has provided new insights into the possible trigger mechanism of these massive glacial iceberg surges. These new findings have great significance for the current climate debate, since they strongly suggest that ongoing ocean warming can trigger a sudden, massive break-up of ice shelves. Such processes may already be in progress in the Arctic (e.g. Vincent et al. 2004), where rapid ice-shelf disruption on the margin of the Canadian Arctic Ocean has been reported to be the result of significant warming over the past few decades. During this period intensified inflow of Atlantic water to the Eurasian sector of the Arctic has been noted. It is evident that for Antarctic ice shelves large-scale disruption and break-up may lead to significant destabilisation of the Antarctic ice sheet with the serious risk of a sudden, drastic sea-level rise
Size differences of Arctic marine protists between two climate periods - using the paleoecological record to assess the importance of within-species trait variation
Mean body size decreases with increasing temperature in a variety of organisms. This size–temperature relationship has generally been tested through space but rarely through time. We analyzed the sedimentary archive of dinoflagellate cysts in a sediment record taken from the West Greenland shelf and show that mean cell size decreased at both intra‐ and interspecific scales in a period of relatively warm temperatures, compared with a period of relatively cold temperatures. We further show that intraspecific changes accounted for more than 70% of the change in community mean size, whereas shifts in species composition only accounted for about 30% of the observed change. Literature values on size ranges and midpoints for individual taxa were in several cases not representative for the measured sizes, although changes in community mean size, calculated from literature values, did capture the direction of change. While the results show that intraspecific variation is necessary to accurately estimate the magnitude of change in protist community mean size, it may be possible to investigate general patterns, that is relative size differences, using interspecific‐level estimates
Baltic Sea Coastal Eutrophication in a Thousand Year Perspective
Sediment cores from three sites along the east-coast of Sweden, north-western Baltic Proper, have been studied with respect to lithologies, geochemistry and diatom assemblages to trace and date early human impact with emphasis on nutrient discharge. The three sites Bråviken, Himmerfjärden and Ådfjärden, have been impacted to various degree during the last millennia by multiple stressors like excessive nutrient discharge and hazardous substances, leading to coastal hypoxia, eutrophication and pollution. These stressors are mainly caused by drivers in the drainage area as increased human population, changed land use and point sources as industries and a sewage treatment plant. Even though their detailed history differs, the results show similar general patterns for all three sites. We find no evidence in our data from the coastal zone supporting the hypothesis that the extensive areal distribution of hypoxia in the open Baltic Sea during the Medieval Climate Anomaly was caused by human impact. Timing of the onset of man-made eutrophication, as identified from d15N and changes in diatom composition, differs between the three sites, reflecting the site specific geography and local environmental histories of these areas. The onset of eutrophication dates to 1800 CE in Bråviken and Himmerfjärden areas, and to 1900 CE in the less urban area of Ådfjärden. We conclude that the recorded environmental changes during the last centuries are unique in a thousand year perspective
A robust, multisite Holocene history of drift ice off northern Iceland: implications for North Atlantic climate
An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative xray diffraction analysis of the \u3c 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between −0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6–7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ~1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode
A robust, multisite Holocene history of drift ice off northern Iceland: implications for North Atlantic climate
An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative xray diffraction analysis of the \u3c 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between −0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6–7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ~1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode
Subarctic Front migration at the Reykjanes Ridge during the mid- to late Holocene:Evidence from planktic foraminifera
Expansion of fresh and sea-ice loaded surface waters from the Arctic Ocean into the sub-polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid- to late Holocene fresh and sea-ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water-mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water-mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid-Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub-polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea-ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium
Not dead yet: Diatom resting spores can survive in nature for several millennia
Premise: Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia-old resting spores buried in sediments. We show for the first time the revival, viability, and germination rate of resting spores of the diatom Chaetoceros deposited in sub-seafloor sediments from three ages (recent: 0 to 80 years; ancient: similar to 1250 (Medieval Climate Anomaly) and similar to 6600 (Holocene Thermal Maximum) calendar year before present.Methods: Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species.Results: We show that similar to 6600 cal. year BP old Chaetoceros resting spores are still viable and that the vegetative reproduction in recent and ancient resting spores varies. The time taken to germinate is three hours to 2 to 3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was similar to 41% while that of the ancient spores were similar to 31% and similar to 12% for the similar to 1250 and similar to 6600 cal. year BP old resting spores, respectively. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri.Conclusions: We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long-term evolutionary studies
Multi‐proxy palaeoenvironmental reconstruction of the Skagerrak from the Lateglacial to Middle Holocene
A Robust, Multisite Holocene History of Drift Ice off Northern Iceland: Implications for North Atlantic Climate
An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative xray diffraction analysis of the \u3c 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between −0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6–7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ~1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode
Multidecadal ocean variability and NW European ice sheet surges during the last deglaciation
A multiproxy paleoceanographic record from the Atlantic margin off the British Isles reveals in unprecedented detail discharges of icebergs and meltwater in response to sea surface temperature increases across the last deglaciation. We observe the earliest signal of deglaciation as a moderate elevation of sea surface temperatures that commenced with a weakly developed thermocline and the presence of highly ventilated intermediate waters in the Rockall Trough. This warming pulse triggered a series of multidecadal ice-rafted debris peaks that culminated with a major meltwater discharge at 17,500 years before present related to ice sheet disintegration across the NW European region. The impact of meltwater caused a progressive reduction in deep water ventilation and a sea surface cooling phase that preceded the collapse of the Laurentide Ice Sheet during Heinrich event 1 by 500-1000 years. A similar sequence of rapid ocean-ice sheet interaction across the European continental margin is identified during the Bølling-Allerød to Younger Dryas transition. The strategic location of our sediment core suggests a sensitive and rapid response of ice sheets in NW Europe to transient increases in thermohaline heat transport
- …
