1,404 research outputs found
Scaling of neural responses to visual and auditory motion in the human cerebellum
The human cerebellum contains approximately half of all the neurons within the cerebrum, yet most experimental work in human neuroscience over the last century has focused exclusively on the structure and functions of the forebrain. The cerebellum has an undisputed role in a range of motor functions (Thach et al., 1992), but its potential contributions to sensory and cognitive processes are widely debated (Stoodley and Schmahmann, 2009). Here we used functional magnetic resonance imaging to test the hypothesis that the human cerebellum is involved in the acquisition of auditory and visual sensory data. We monitored neural activity within the cerebellum while participants engaged in a task that required them to discriminate the direction of a visual or auditory motion signal in noise. We identified a distinct set of cerebellar regions that were differentially activated for visual stimuli (vermal lobule VI and right-hemispheric lobule X) and auditory stimuli (right-hemispheric lobules VIIIA and VIIIB and hemispheric lobule VI bilaterally). In addition, we identified a region in left crus I in which activity correlated significantly with increases in the perceptual demands of the task (i.e., with decreasing signal strength), for both auditory and visual stimuli. Our results support suggestions of a role for the cerebellum in the processing of auditory and visual motion and suggest that parts of cerebellar cortex are concerned with tracking movements of objects around the animal, rather than with controlling movements of the animal itself (Paulin, 1993)
Medial parietal cortex encodes perceived heading direction in humans
The ability to encode and update representations of heading direction is crucial for successful navigation. In rats, head-direction cells located within the limbic system alter their firing rate in accordance with the animal's current heading. To date, however, the neural structures that underlie an allocentric or viewpoint-independent sense of direction in humans remain unknown. Here we used functional magnetic resonance imaging (fMRI) to measure neural adaptation to distinctive landmarks associated with one of four heading directions in a virtual environment. Our experiment consisted of two phases: a "learning phase," in which participants actively navigated the virtual maze; and a "test phase," in which participants viewed pairs of images from the maze while undergoing fMRI. We found that activity within the medial parietal cortex—specifically, Brodmann area 31—was modulated by learned heading, suggesting that this region contains neural populations involved in the encoding and retrieval of allocentric heading information in humans. These results are consistent with clinical case reports of patients with acquired lesions of medial posterior brain regions, who exhibit deficits in forming and recalling links between landmarks and directional information. Our findings also help to explain why navigation disturbances are commonly observed in patients with Alzheimer's disease, whose pathology typically includes the cortical region we have identified as being crucial for maintaining representations of heading direction
Exploring the applicability of biological and socioeconomic tools in developing EAFM plans for data absent areas : Spinner dolphin EAFM for Kalpitiya, Sri Lanka
Acknowledgements University of Aberdeen, UK and Bay of Bengal Large Marine Ecosystems (BOBLME) project are acknowledged for partial funding of this research.Peer reviewedPostprin
Dissociable representations of environmental size and complexity in the human hippocampus
The hippocampus is widely assumed to play a central role in representing spatial layouts in the form of "cognitive maps." It remains unclear, however, which properties of the world are explicitly encoded in the hippocampus, and how these properties might contribute to the formation of cognitive maps. Here we investigated how physical size and complexity, two key properties of any environment, affect memory-related neural activity in the human hippocampus. We used functional magnetic resonance imaging and a virtual maze-learning task to examine retrieval-related activity for three previously learned virtual mazes that differed systematically in their physical size and complexity (here defined as the number of distinct paths within the maze). Before scanning, participants learned to navigate each of the three mazes; hippocampal activity was then measured during brief presentations of static images from within each maze. Activity within the posterior hippocampus scaled with maze size but not complexity, whereas activity in the anterior hippocampus scaled with maze complexity but not size. This double dissociation demonstrates that environmental size and complexity are explicitly represented in the human hippocampus, and reveals a functional specialization for these properties along its anterior-posterior axis
Functional topography of primary emotion processing in the human cerebellum
The cerebellum has an important role in the control and coordination of movement. It is now clear, however, that the cerebellum is also involved in neural processes underlying a wide variety of perceptual and cognitive functions, including the regulation of emotional responses. Contemporary neurobiological models of emotion assert that a small set of discrete emotions are mediated through distinct cortical and subcortical areas. Given the connectional specificity of neural pathways that link the cerebellum with these areas, we hypothesized that distinct sub-regions of the cerebellum might subserve the processing of different primary emotions. We used functional magnetic resonance imaging (fMRI) to identify neural activity patterns within the cerebellum in 30 healthy human volunteers as they categorized images that elicited each of the five primary emotions: happiness, anger, disgust, fear and sadness. In support of our hypothesis, all five emotions evoked spatially distinct patterns of activity in the posterior lobe of the cerebellum. We also detected overlaps between cerebellar activations for particular emotion categories, implying the existence of shared neural networks. By providing a detailed map of the functional topography of emotion processing in the cerebellum, our study provides important clues to the diverse effects of cerebellar pathology on human affective function
Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies
Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components
Distinct neural networks underlie encoding of categorical versus coordinate spatial relations during active navigation
It has been proposed that spatial relations are encoded either categorically, such that the relative positions of objects are defined in prepositional terms; or in terms of visual coordinates, such that the precise distances between objects are represented. In humans, it has been assumed that a left hemisphere neural network sub-serves categorical representations, and that coordinate representations are right lateralised. However, evidence in support of this distinction has been garnered exclusively from tasks that involved static, two-dimensional (2D) arrays. We used functional magnetic resonance imaging (fMRI) to identify neural circuits underlying categorical and coordinate representations during active spatial navigation. Activity in the categorical condition was significantly greater in the parietal cortex, whereas the coordinate condition revealed greater activity in medial temporal cortex and dorsal striatum. In addition, activity in the categorical condition was greater in parietal cortex within the left hemisphere than within the right Our findings are consistent with analogous studies in rodents, and support the suggestion of distinct neural circuits underlying categorical and coordinate representations during active spatial navigation. The findings also support the claim of a left hemispheric preponderance for the processing of categorical spatial relations. (C) 2012 Elsevier Inc. All rights reserved
Reference frames in allocentric representations are invariant across static and active encoding
An influential model of spatial memory the so-called reference systems account proposes that relationships between objects are biased by salient axes ("frames of reference") provided by environmental cues, such as the geometry of a room. In this study, we sought to examine the extent to which a salient environmental feature influences the formation of spatial memories when learning occurs via a single, static viewpoint and via active navigation, where information has to be integrated across multiple viewpoints. In our study, participants learned the spatial layout of an object array that was arranged with respect to a prominent environmental feature within a virtual arena. Location memory was tested using judgments of relative direction. Experiment 1A employed a design similar to previous studies whereby learning of object-location information occurred from a single, static viewpoint. Consistent with previous studies, spatial judgments were significantly more accurate when made from an orientation that was aligned, as opposed to misaligned, with the salient environmental feature. In Experiment 1B, a fresh group of participants learned the same object-location information through active exploration, which required integration of spatial information over time from a ground-level perspective. As in Experiment 1A, object-location information was organized around the salient environmental cue. Taken together, the findings suggest that the learning condition (static vs. active) does not affect the reference system employed to encode object-location information. Spatial reference systems appear to be a ubiquitous property of spatial representations, and might serve to reduce the cognitive demands of spatial processing
Distinct contributions of attention and working memory to visual statistical learning and ensemble processing
The brain exploits redundancies in the environment to efficiently represent the complexity of the visual world. One example of this is ensemble processing, which provides a statistical summary of elements within a set (e.g., mean size). Another is statistical learning, which involves the encoding of stable spatial or temporal relationships between objects. It has been suggested that ensemble processing over arrays of oriented lines disrupts statistical learning of structure within the arrays (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). Here we asked whether ensemble processing and statistical learning are mutually incompatible, or whether this disruption might occur because ensemble processing encourages participants to process the stimulus arrays in a way that impedes statistical learning. In Experiment 1, we replicated Zhao and colleagues' finding that ensemble processing disrupts statistical learning. In Experiments 2 and 3, we found that statistical learning was unimpaired by ensemble processing when task demands necessitated (a) focal attention to individual items within the stimulus arrays and (b) the retention of individual items in working memory. Together, these results are consistent with an account suggesting that ensemble processing and statistical learning can operate over the same stimuli given appropriate stimulus processing demands during exposure to regularities
Learning from Errors: Error-Related Neural Activity Predicts Improvements in Future Inhibitory Control Performance
Failure to adapt performance following an error is a debilitating symptom of many neurological and psychiatric conditions. Healthy individuals readily adapt their behavior in response to an error, an ability thought to be subserved by the posterior medial frontal cortex (pMFC). However, it remains unclear how humans adaptively alter cognitive control behavior when they reencounter situations that were previously failed minutes or days ago. Using functional magnetic resonance imaging, we examined neural activity during a Go/No-go response inhibition task that provided the opportunity for participants to learn from their errors. When they failed to inhibit their response, they were shown the same target stimulus during the next No-go trial, which itself could occur up to 20 trials after its initial presentation. Activity within the pMFC was significantly greater for initial errors that were subsequently corrected than for errors that were repeated later in the display sequence. Moreover, pMFC activity during errors predicted future responses despite a sizeable interval (on average 12 trials) between an error and the next No-go stimulus. Our results indicate that changes in cognitive control performance can be predicted using error-related activity. The increased likelihood of adaptive changes occurring during periods of recent success is consistent with models of error-related activity that argue for the influence of outcome expectancy (Holroyd and Coles, 2002; Brown and Braver, 2005). The findings may also help to explain the diminished error-related neural activity in such clinical conditions as schizophrenia, as well as the propensity for perseverative behavior in these clinical groups
- …
