4,510 research outputs found
Leaf-Atmosphere NH3 Exchange in Barley Mutants with Reduced Activities of Glutamine Synthetase
Mutants of barley (Hordeum vulgare L. cv Maris Mink) with 47 or 66% of the glutamine synthetase (GS) activity of the wild type were used for studies of NH3 exchange with the atmosphere. Under normal light and temperature conditions, tissue NH4+ concentrations were higher in the two mutants compared with wild-type plants, and this was accompanied by higher NH3 emission from the leaves. The emission of NH3 increased with increasing leaf temperatures in both wild-type and mutant plants, but the increase was much more pronounced in the mutants. Similar results were found when the light intensity (photosynthetic photon flux density) was increased. Compensation points for NH3 were estimated by exposing intact shoots to 10 nmol NH3 mol-1 air under conditions with increasing temperatures until the plants started to emit NH3. Referenced to 25[deg]C, the compensation points were 5.0 nmol mol-1 for wild-type plants, 8.3 nmol mol-1 for 47% GS mutants, and 11.8 nmol mol-1 for 66% GS mutants. Compensation points for NH3 in single, nonsenescent leaves were estimated on the basis of apoplastic pH and NH4+ concentrations. These values were 0.75, 3.46, and 7.72 nmol mol-1 for wild type, 47% GS mutants, and 66% GS mutants, respectively. The 66% GS mutant always showed higher tissue NH4+ concentrations, NH3 emission rates, and NH3 compensation points compared with the 47% GS mutant, indicating that NH4+ release was curtailed by some kind of compensatory mechanism in plants with only 47% GS activit
Theory of melting at high pressures: Amending Density Functional Theory with Quantum Monte Carlo
We present an improved first-principles description of melting under pressure
based on thermodynamic integration comparing Density Functional Theory (DFT)
and quantum Monte Carlo (QMC) treatments of the system. The method is applied
to address the longstanding discrepancy between density functional theory (DFT)
calculations and diamond anvil cell (DAC) experiments on the melting curve of
xenon, a noble gas solid where van der Waals binding is challenging for
traditional DFT methods. The calculations show excellent agreement with data
below 20 GPa and that the high-pressure melt curve is well described by a
Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC
data
Modelica - A Language for Physical System Modeling, Visualization and Interaction
Modelica is an object-oriented language for modeling of large, complex and heterogeneous physical systems. It is suited for multi-domain modeling, for example for modeling of mechatronics including cars, aircrafts and industrial robots which typically consist of mechanical, electrical and hydraulic subsystems as well as control systems. General equations are used for modeling of the physical phenomena, No particular variable needs to be solved for manually. A Modelica tool will have enough information to do that automatically. The language has been designed to allow tools to generate efficient code automatically. The modeling effort is thus reduced considerably since model components can be reused and tedious and error-prone manual manipulations are not needed. The principles of object-oriented modeling and the details of the Modelica language as well as several examples are presented
Discovery of stars surrounded by iron dust in the LMC
We consider a small sample of oxygen-rich, asymptotic giant branch stars in
the Large Magellanic Cloud, observed by the Spitzer Space Telescope, exhibiting
a peculiar spectral energy distribution, which can be hardly explained by the
common assumption that dust around AGB stars is primarily composed of silicate
grains. We suggest that this uncommon class of objects are the progeny of a
metal-poor generation of stars, with metallicity ,
formed Myr ago. The main dust component in the circumstellar
envelope is solid iron. In these stars the poor formation of silicates is set
by the strong nucleosynthesis experienced at the base of the envelope, which
provokes a scarcity of magnesium atoms and water molecules, required to the
silicate formation. The importance of the present results to interpret the data
from the incoming James Webb Space Telescope is also discussed.Comment: Accepted for publication in ApJ Letter on 9 January 201
Supernovae data and perturbative deviation from homogeneity
We show that a spherically symmetric perturbation of a dust dominated
FRW universe in the Newtonian gauge can lead to an apparent
acceleration of standard candles and provide a fit to the magnitude-redshift
relation inferred from the supernovae data, while the perturbation in the
gravitational potential remains small at all scales. We also demonstrate that
the supernovae data does not necessarily imply the presence of some additional
non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model
fitting the supernovae data (with appropriate initial conditions) will be
equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated,
minor modifications and clarifications, matches published versio
Higher order finite difference schemes for the magnetic induction equations
We describe high order accurate and stable finite difference schemes for the
initial-boundary value problem associated with the magnetic induction
equations. These equations model the evolution of a magnetic field due to a
given velocity field. The finite difference schemes are based on Summation by
Parts (SBP) operators for spatial derivatives and a Simultaneous Approximation
Term (SAT) technique for imposing boundary conditions. We present various
numerical experiments that demonstrate both the stability as well as high order
of accuracy of the schemes.Comment: 20 page
European Community Multi-Center Trial "Fetal ECG Analysis During Labor": ST plus CTG analysis
This report form part of the European Community Multi-Center Trial "Fetal ECG Analysis during Labor". Aim of this prospective trial was to identify changes in the fetal ECG waveform with cases of verified fetal hypoxia. In this paper we also report on the use of a newly developed automatic system for identification of ST waveform changes (ST Log). All ECG were recorded with the STAN recorder (Neoventa Medical AB, Gothenburg, Sweden). The ECG information was not displayed during labor in order not to influence the clinical management. This report includes data from 320 cases and include six cases of fetal intrapartum hypoxia. Twenty seven cases showed changes in ST waveform. All five cases with the most marked ST change (a rise in T/QRS of >0.10 units and lasting more then 10 minutes) had signs of ongoing intrapartum hypoxia. Six out of six cases with evidence of intrapartum asphyxia, showed ST changes. On the basis of our multi-center trial it appears that the combined analysis of CTG and ST waveform changes provides an accurate way to identify adverse events during labor. The work is continuing with a new STAN recorder developed by Neoventa Medical in Goteborg and currently being tested in a Swedish randomized, controlled multi-center trial
Back-reaction and effective acceleration in generic LTB dust models
We provide a thorough examination of the conditions for the existence of
back-reaction and an "effective" acceleration (in the context of Buchert's
averaging formalism) in regular generic spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical
comoving domains, we verify rigorously the fulfillment of these conditions
expressed in terms of suitable scalar variables that are evaluated at the
boundary of every domain. Effective deceleration necessarily occurs in all
domains in: (a) the asymptotic radial range of models converging to a FLRW
background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c)
LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating
domains are proven to exist in the following scenarios: (i) central vacuum
regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial
range of models converging to a FLRW background, (iv) the asymptotic radial
range of models converging to a Minkowski vacuum and (v) domains near and/or
intersecting a non-simultaneous big bang. All these scenarios occur in
hyperbolic models with negative averaged and local spatial curvature, though
scenarios (iv) and (v) are also possible in low density regions of a class of
elliptic models in which local spatial curvature is negative but its average is
positive. Rough numerical estimates between -0.003 and -0.5 were found for the
effective deceleration parameter. While the existence of accelerating domains
cannot be ruled out in models converging to an Einstein de Sitter background
and in domains undergoing gravitational collapse, the conditions for this are
very restrictive. The results obtained may provide important theoretical clues
on the effects of back-reaction and averaging in more general non-spherical
models.Comment: Final version accepted for publication in Classical and Quantum
Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure
Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/ccm
Recently there has been tremendous increase in the number of identified
extra-solar planetary systems. Our understanding of their formation is tied to
exoplanet internal structure models, which rely upon equations of state of
light elements and compounds like water. Here we present shock compression data
for water with unprecedented accuracy that shows water equations of state
commonly used in planetary modeling significantly overestimate the
compressibility at conditions relevant to planetary interiors. Furthermore, we
show its behavior at these conditions, including reflectivity and isentropic
response, is well described by a recent first-principles based equation of
state. These findings advocate this water model be used as the standard for
modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our
understanding of these types of planets.Comment: Accepted to Phys. Rev. Lett.; supplementary material attached
including 2 figures and 2 tables; to view attachments, please download and
extract the gzipped tar source file listed under "Other formats
- …
