7,197 research outputs found
Characterizing PSPACE with Shallow Non-Confluent P Systems
In P systems with active membranes, the question of understanding the
power of non-confluence within a polynomial time bound is still an open problem. It is
known that, for shallow P systems, that is, with only one level of nesting, non-con
uence
allows them to solve conjecturally harder problems than con
uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact
characterization. Therefore, the power endowed by non-con
uence to shallow P systems
is equal to the power gained by con
uent P systems when non-elementary membrane
division and polynomial depth are allowed, thus suggesting a connection between the
roles of non-confluence and nesting depth
Rates and Equilibria for a Photoisomerizable Antagonist at the Acetylcholine Receptor of Electrophorus Electroplaques
Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[α-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show apparent dissociation constants of 0.3 and 1 µM for the cis and trans isomers, respectively. Flash-induced trans → cis concentration jumps produce the expected decrease in agonist-induced conductance; the time constant is several tens of milliseconds. From the concentration dependence of these rates, we conclude that the association and dissociation rate constants for the cis-2BQ-receptor binding are approximately ~ 10^8 M^(-1) s^(-1) and 60 s^(-1) at 20ºC; the Q_(10) is 3. Flash-induced cis → trans photoisomerizations produce molecular rearrangements of the ligand-receptor complex, but the resulting relaxations probably reflect the kinetics of buffered diffusion rather than of the interaction between trans-2BQ and the receptor. Antagonists seem to bind about an order of magnitude more slowly than agonists at nicotinic receptors
Effect of dimensionality on the charge-density-wave in few-layers 2H-NbSe
We investigate the charge density wave (CDW) instability in single and double
layers, as well as in the bulk 2H-NbSe. We demonstrate that the density
functional theory correctly describes the metallic CDW state in the bulk
2H-NbSe. We predict that both mono- and bilayer NbSe undergo a CDW
instability. However, while in the bulk the instability occurs at a momentum
, in free-standing layers it
occurs at . Furthermore, while
in the bulk the CDW leads to a metallic state, in a monolayer the ground state
becomes semimetallic, in agreement with recent experimental data. We elucidate
the key role that an enhancement of the electron-phonon matrix element at
plays in forming the CDW ground state.Comment: 4 pages 5 figure
Hygrothermal damage mechanisms in graphite-epoxy composites
T300/5209 and T300/5208 graphite epoxy laminates were studied experimentally and analytically in order to: (1) determine the coupling between applied stress, internal residual stress, and moisture sorption kinetics; (2) examine the microscopic damage mechanisms due to hygrothermal cycling; (3) evaluate the effect of absorbed moisture and hygrothermal cycling on inplane shear response; (4) determine the permanent loss of interfacial bond strength after moisture absorption and drying; and (5) evaluate the three dimensional stress state in laminates under a combination of hygroscopic, thermal, and mechanical loads. Specimens were conditioned to equilibrium moisture content under steady exposure to 55% or 95% RH at 70 C or 93 C. Some specimens were tested subsequent to moisture conditioning and 100 cycles between -54 C and either 70 C or 93 C
Simulating counting oracles with cooperation
We prove that monodirectional shallow chargeless P systems with active
membranes and minimal cooperation working in polynomial time precisely characterise
P#P
k , the complexity class of problems solved in polynomial time by deterministic
Turing machines with a polynomial number of parallel queries to an oracle for a counting
problem
Structure, Stability, Edge States and Aromaticity of Graphene Ribbons
We determine the stability, the geometry, the electronic and magnetic
structure of hydrogen-terminated graphene-nanoribbons edges as a function of
the hydrogen content of the environment by means of density functional theory.
Antiferromagnetic zigzag ribbons are stable only at extremely-low ultra-vacuum
pressures. Under more standard conditions, the most stable structures are the
mono- and di-hydrogenated armchair edges and a zigzag edge reconstruction with
one di- and two mono-hydrogenated sites. At high hydrogen-concentration
``bulk'' graphene is not stable and spontaneously breaks to form ribbons, in
analogy to the spontaneous breaking of graphene into small-width nanoribbons
observed experimentally in solution. The stability and the existence of exotic
edge electronic-states and/or magnetism is rationalized in terms of simple
concepts from organic chemistry (Clar's rule)Comment: 4 pages, 3 figures, accepted for publication by Physical Review
Letter
Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia
We determine, by means of density functional theory, the stability and the
structure of graphene nanoribbon (GNR) edges in presence of molecules such as
oxygen, water, ammonia, and carbon dioxide. As in the case of
hydrogen-terminated nanoribbons, we find that the most stable armchair and
zigzag configurations are characterized by a non-metallic/non-magnetic nature,
and are compatible with Clar's sextet rules, well known in organic chemistry.
In particular, we predict that, at thermodynamic equilibrium, neutral GNRs in
oxygen-rich atmosphere should preferentially be along the armchair direction,
while water-saturated GNRs should present zigzag edges. Our results promise to
be particularly useful to GNRs synthesis, since the most recent and advanced
experimental routes are most effective in water and/or ammonia-containing
solutions.Comment: accepted for publication in PR
Characterizing PSPACE with Shallow Non-Confluent P Systems
In P systems with active membranes, the question of understanding the
power of non-confluence within a polynomial time bound is still an open problem. It is
known that, for shallow P systems, that is, with only one level of nesting, non-con
uence
allows them to solve conjecturally harder problems than con
uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact
characterization. Therefore, the power endowed by non-con
uence to shallow P systems
is equal to the power gained by con
uent P systems when non-elementary membrane
division and polynomial depth are allowed, thus suggesting a connection between the
roles of non-confluence and nesting depth
First-Principles Wannier Functions of Silicon and Gallium Arsenide
We present a self-consistent, real-space calculation of the Wannier functions
of Si and GaAs within density functional theory. We minimize the total energy
functional with respect to orbitals which behave as Wannier functions under
crystal translations and, at the minimum, are orthogonal. The Wannier functions
are used to calculate the total energy, lattice constant, bulk modulus, and the
frequency of the zone-center TO phonon of the two semiconductors with the
accuracy required nowadays in ab-initio calculations. Furthermore, the centers
of the Wannier functions are used to compute the macroscopic polarization of Si
and GaAs in zero electric field. The effective charges of GaAs, obtained by
finite differentiation of the polarization, agree with the results of linear
response theory.Comment: 12 pages, 2 PostScript figures, RevTeX, to appear in Physical Review
Introducing a Space Complexity Measure for P Systems
We define space complexity classes in the framework of membrane computing, giving some initial results about their mutual relations and their connection with time
complexity classes, and identifying some potentially interesting problems which require
further research
- …
