704 research outputs found

    The transformation of Spirals into S0 galaxies in the cluster environment

    Get PDF
    We discuss the observational evidences of the morphological transformation of Spirals into S0 galaxies in the cluster environment exploiting two big databases of galaxy clusters: WINGS (0.04 < z < 0.07) and EDisCS (0.4 < z < 0.8). The most important results are: 1) the average number of S0 galaxies in clusters is almost a factor of 34\sim 3 - 4 larger today than at redshift z1z \sim 1; 2) the fraction of S0's to Spirals increases on average by a factor \sim 2 every Gyr; 3) the average rate of transformation for Spirals (not considering the infall of new galaxies from the cosmic web) is: \sim 5 Sp into S0's per Gyr and \sim 2 Sp into E's per Gyr; 4) there are evidences that the interstellar gas of Spirals is stripped by an hot intergalactic medium; 5) there are also indirect hints that major/minor merging events have played a role in the transformation of Spiral galaxies. In particular, we show that: 1) the ratio between the number of S0's and Spirals (NS0/NSp) in the WINGS clusters is correlated with their X-ray luminosity LXL_X ; 2) that the brightest and massive S0's are always close to the cluster center; 3) that the mean Sersic index of S0's is always larger than that of Spirals (and lower than E's) for galaxy stellar masses above 109.510^9.5 Msun; 4) that the number of E's in clusters cannot be constant; 5) that the largest difference between the mean mass of S0's and E's with respect to Spirals is observed in clusters with low velocity dispersion. Finally, by comparing the properties of the various morphological types for galaxies in clusters and in the field, we find that the most significant effect of the environment is the stripping of the outer galaxy regions, resulting in a systematic difference in effective radius and Sersic index.Comment: 38 pages, 20 figure

    The parallelism between galaxy clusters and early-type galaxies: I. The light and mass profiles

    Get PDF
    We have analyzed the parallelism between the properties of galaxy clusters and early-type galaxies (ETGs) by looking at the similarity between their light profiles. We find that the equivalent luminosity profiles of all these systems in the \vfilt\ band, once normalized to the effective radius \re\ and shifted in surface brightness, can be fitted by the S\'ersic's law \Sers\ and superposed with a small scatter (0.3\le0.3 mag). By grouping objects in different classes of luminosity, the average profile of each class slightly deviates from the other only in the inner and outer regions (outside 0.1r/Re30.1\leq r/R_e\leq 3), but the range of values of nn remains ample for the members of each class, indicating that objects with similar luminosity have quite different shapes. The "Illustris" simulation reproduces quite well the luminosity profiles of ETGs, with the exception of in the inner and outer regions where feedback from supernovae and active galactic nuclei, wet and dry mergers, are at work. The total mass and luminosity of galaxy clusters as well as their light profiles are not well reproduced. By exploiting simulations we have followed the variation of the effective half-light and half-mass radius of ETGs up to z=0.8z=0.8, noting that progenitors are not necessarily smaller in size than current objects. We have also analyzed the projected dark+baryonic and dark-only mass profiles discovering that after a normalization to the half-mass radius, they can be well superposed and fitted by the S\'ersic's law.Comment: 25 pages, 19 figure

    Cosmological interpretation of the color-magnitude diagrams of galaxy clusters

    Full text link
    We investigate the color-magnitude diagram (CMD) of cluster galaxies in the hierarchical Λ\Lambda-CDM cosmological scenario using both single stellar populations and simple galaxy models. First, we analyze the effect of bursts and mergers and companion chemical pollution and rejuvenation of the stellar content on the integrated light emitted by galaxies. The dispersion of the galaxy magnitudes and colors on the MV(BV)M_V-(B-V) plane is mainly due to mixing of ages and metallicities of the stellar populations, with mergers weighting more than bursts of similar mass fractions. The analysis is made using the Monte-Carlo technique applied to ideal model galaxies reduced to single stellar populations with galaxy-size mass to evaluate mass, age and metallicity of each object. We show that separately determining the contributions by bursts and mergers leads to a better understanding of observed properties of CMD of cluster galaxies. Then we repeat the analysis using suitable chemo-photometric models of galaxies whose mass is derived from the cosmological predictions of the galaxy content of typical clusters. Using the halo mass function and the Monte-Carlo technique, we derive the formation redshift of each galaxy and its photometric history. These are used to simulate the CMD of the cluster galaxies. The main conclusion is that most massive galaxies have acquired the red color they show today in very early epochs and remained the same ever since. The simulations nicely reproduce the Red Sequence, the Green Valley and the Blue Cloud, the three main regions of the CMD in which galaxies crowd.Comment: Accepted for publication in Ap

    Dependency of halo concentration on mass, redshift and fossilness in Magneticum hydrodynamic simulations

    Full text link
    We study the dependency of the concentration on mass and redshift using three large N-body cosmological hydrodynamic simulations carried out by the Magneticum project. We constrain the slope of the mass-concentration relation with an unprecedented mass range for hydrodynamic simulations and find a negative trend on the mass-concentration plane and a slightly negative redshift dependency, in agreement with observations and other numerical works. We also show how the concentration correlates with the fossil parameter, defined as the stellar mass ratio between the central galaxy and the most massive satellite, in agreement with observations. We find that haloes with high fossil parameter have systematically higher concentration and investigate the cause in two different ways. First we study the evolution of haloes that lives unperturbed for a long period of time, where we find that the internal region keeps accreting satellites as the fossil parameter increases and the scale radius decreases (which increases the concentration). We also study the dependency of the concentration on the virial ratio and the energy term from the surface pressure EsE_s. We conclude that fossil objects have higher concentration because they are dynamically relaxed, with no in-fall/out-fall material and had time to accrete their satellites.Comment: 13 pages, 10 figure

    Cosmic Star Formation: a simple model of the SFRD(z)

    Full text link
    We investigate the evolution of the cosmic star formation rate density (SFRD) from redshift z=20 to z=0 and compare it with the observational one by Madau and Dickinson derived from recent compilations of UV and IR data. The theoretical SFRD(z) and its evolution are obtained using a simple model which folds together the star formation histories of prototype galaxies designed to represent real objects of different morphological type along the Hubble sequence and the hierarchical growing of structures under the action of gravity from small perturbations to large scale objects in \Lambda-CDM cosmogony, i.e. the number density of dark matter halos N(M,z). Although the overall model is very simple and easy to set up, it provides results that well mimic those obtained from large scale N-body simulations of great complexity. The simplicity of our approach allows us to test different assumptions for the star formation law in galaxies, the effects of energy feedback from stars to interstellar gas and the efficiency of galactic winds, and also the effect of N(M,z). The result of our analysis is that in the framework of the hierarchical assembly of galaxies the so-called time-delayed star formation under plain assumptions mainly for the energy feedback and galactic winds can reproduce the observational SFRD(z).Comment: ApJ (accepted for publication

    Structural and dynamical modeling of WINGS clusters. I. The distribution of cluster galaxies of different morphological classes within regular and irregular clusters

    Get PDF
    [Abridged] We use the WINGS database to select a sample of 67 nearby galaxy clusters with at least 30 spectroscopic members each. 53 of these clusters do not show evidence of substructures in phase-space, while 14 do. We estimate the virial radii and circular velocities of the 67 clusters by a variety of proxies (velocity dispersion, X-ray temperature, and richness) and use these estimates to build stack samples from these 53 and 14 clusters ('Reg' and 'Irr' stacks, respectively). We determine the number-density and velocity-dispersion profiles (VDPs) of E, S0, and Sp+Irr (S) galaxies in the Reg and Irr samples, separately, and fit models to these profiles. The number density profiles of E, S0, and S galaxies are adequately described by either a NFW or a cored King model, both for the Reg and Irr samples, with a slight preference for the NFW model. The spatial distribution concentration increases from the S to the S0 and to the E populations, both in the Reg and the Irr stacks, reflecting the well-known morphology-radius relation. Reg clusters have a more concentrated spatial distribution of E and S0 galaxies than Irr clusters, while the spatial distributions of S galaxies in Reg and Irr clusters are similar. We propose a new phenomenological model that provides acceptable fits to the VDP of all our galaxy samples. The VDPs become steeper and with a higher normalization from E to S0 to S galaxies. The S0 VDP is close to that of E galaxies in Reg clusters, and intermediate between those of E and S galaxies in Irr clusters. Our results suggest that S galaxies are a recently accreted cluster population, that take less than 3 Gyr to evolve into S0 galaxies after accretion, and in doing so modify their phase-space distribution, approaching that of cluster ellipticals. While in Reg clusters this evolutionary process is mostly completed, it is still ongoing in Irr clusters.Comment: A&A, in press - 11 pages, 9 figures, 4 table

    Superdense galaxies and the mass-size relation at low redshift

    Full text link
    We search for massive and compact galaxies (superdense galaxies, hereafter SDGs) at z=0.03-0.11 in the Padova-Millennium Galaxy and Group Catalogue, a spectroscopically complete sample representative of the local Universe general field population. We find that compact galaxies with radii and mass densities comparable to high-z massive and passive galaxies represent 4.4% of all galaxies with stellar masses above 3 X 10^10 M_sun, yielding a number density of 4.3 X 10^-4 h^3 Mpc^-3. Most of them are S0s (70%) or ellipticals (23%), are red and have intermediate-to-old stellar populations, with a median luminosity-weighted age of 5.4 Gyr and a median mass-weighted age of 9.2 Gyr. Their velocity dispersions and dynamical masses are consistent with the small radii and high stellar mass estimates. Comparing with the WINGS sample of cluster galaxies at similar redshifts, the fraction of superdense galaxies is three times smaller in the field than in clusters, and cluster SDGs are on average 4 Gyr older than field SDGs. We confirm the existence of a universal trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. On top of the well known dependence of stellar age on galaxy mass, the luminosity-weighted age of galaxies depends on galaxy compactness at fixed mass, and, for a fixed mass and radius, on environment. This effect needs to be taken into account in order not to overestimate the evolution of galaxy sizes from high- to low-z. Our results and hierarchical simulations suggest that a significant fraction of the massive compact galaxies at high-z have evolved into compact galaxies in galaxy clusters today. When stellar age and environmental effects are taken into account, the average amount of size evolution of individual galaxies between high- and low-z is mild, a factor ~1.6. (abridged)Comment: ApJ, in pres

    GASP IV: A muse view of extreme ram-pressure stripping in the plane of the sky: the case of jellyfish galaxy JO204

    Get PDF
    In the context of the GAs Stripping Phenomena in galaxies with Muse (GASP) survey, we present the characterization of JO204, a jellyfish galaxy in A957, a relatively low-mass cluster with M=4.4×1014MM=4.4 \times10^{14}M_\odot. This galaxy shows a tail of ionized gas that extends up to 30 kpc from the main body in the opposite direction of the cluster center. No gas emission is detected in the galaxy outer disk, suggesting that gas stripping is proceeding outside-in. The stellar component is distributed as a regular disk galaxy; the stellar kinematics shows a symmetric rotation curve with a maximum radial velocity of 200km/s out to 20 kpc from the galaxy center. The radial velocity of the gas component in the central part of the disk follows the distribution of the stellar component; the gas kinematics in the tail retains the rotation of the galaxy disk, indicating that JO204 is moving at high speed in the intracluster medium. Both the emission and radial velocity maps of the gas and stellar components indicate ram-pressure as the most likely primary mechanism for gas stripping, as expected given that JO204 is close to the cluster center and it is likely at the first infall in the cluster. The spatially resolved star formation history of JO204 provides evidence that the onset of ram-pressure stripping occurred in the last 500 Myr, quenching the star formation activity in the outer disk, where the gas has been already completely stripped. Our conclusions are supported by a set of hydrodynamic simulations.Comment: accepted for publication in Ap

    The evolution of galaxy sizes

    Full text link
    We present a study of galaxy sizes in the local Universe as a function of galaxy environment, comparing clusters and the general field. Galaxies with radii and masses comparable to high-z massive and compact galaxies represent 4.4% of all galaxies more massive than 3 X 10^{10} M_sun in the field. Such galaxies are 3 times more frequent in clusters than in the field. Most of them are early-type galaxies with intermediate to old stellar populations. There is a trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. We show the relation between size and luminosity-weighted age for galaxies of different stellar masses and in different environments. We compare with high-z data to quantify the evolution of galaxy sizes. We find that, once the progenitor bias due to the relation between galaxy size and stellar age is removed, the average amount of size evolution of individual galaxies between high- and low-z is mild, of the order of a factor 1.6.Comment: to appear in the proceedings of the IAU S295: The intriguing life of massive galaxies, editors D. Thomas, A. Pasquali & I. Ferrera

    The scaling relations of galaxies back in time: the road toward virialization

    Full text link
    Context. The structural scaling relations (SSRs) of galaxies, i.e. the observed correlations between effective radius, effective surface intensity and velocity dispersion, are important tools for understanding how evolution proceeds. Aims. In this paper we aim to demonstrate that the evolution of the SSRs back in time is governed by the combination of the virial theorem (VT) and the relation L=L0σβ(t)L=L'_0 \sigma^{\beta(t)}, where the parameters β\beta and L0L'_0 vary with time and from galaxy to galaxy. Methods. Using the WINGS database for the galaxies at redshift z=0z=0 and the Illustris-1 and Illustris-TNG databases of artificial galaxies, for the galaxies up to redshift z=4z=4, we analyse the SSRs back in time and, by means of simple algebraic expressions for L0L'_0 and β\beta (functions of time and other physical quantities), we derive the expected paths followed by galaxies in the various SSRs toward the distributions observed at z=0z=0. Results. The distribution of galaxies in the SSRs is ultimately related to the evolution in luminosity and velocity dispersion that are empirically mirrored by the L=L0σβ(t)L=L'_0 \sigma^{\beta(t)} law. Furthermore, the β\beta parameter works as a thermometer of the virialization of a galaxy. This parameter can assume either positive or negative values, and its absolute value attains high values when the galaxy is close to the virial condition, while it tends to zero when the galaxy is far from it. Conclusions. As the SSRs change with time, the method we are proposing allows us to decipher the temporal evolution of galaxies.Comment: 21 pages, 20 figure
    corecore