255 research outputs found

    Image-guided surgery in oral cancer:toward improved margin control

    Get PDF
    Purpose of review The aim of this review is to discuss recent studies on the assessment of tumor extension and resection margins by different intraoperative techniques allowing for image-guided surgery of oral cancer. Recent findings There are different in-vivo and ex-vivo intraoperative techniques to improve margin control of which intraoperative ultrasound and targeted fluorescence-guided resections have high potential clinical value and are closest to clinical implementation. In oral cancer surgery, resection margins, particularly deep margins, are often inadequate. Intraoperative frozen section does not improve resection margin control sufficiently. Specimen-driven intraoperative assessment for gross analysis of suspected margins reduces the amount of positive resection margins substantially but leaves still room for improvement. Mucosal staining methods, optical coherence tomography and narrow band imaging can only be used for superficial (mucosal) resection margin control. Spectroscopy is under investigation, but clinical data are scarce. Intraoperative ex-vivo imaging of the resection specimen by magnetic resonance and PET/computed tomography may be used to assess resection margins but needs more research. Intraoperative in-vivo ad ex-vivo ultrasound and targeted fluorescence imaging have high potential clinical value to guide oral cancer resections and are closest to clinical implementation for improved margin control

    A non-metallic PEEK topology optimization reconstruction implant for large mandibular continuity defects, validated using the MANDYBILATOR apparatus

    Get PDF
    In cases of large mandibular continuity defects resulting from malignancy resection, the current standard of care involves using patient-specific/custom titanium reconstruction plates along with autogenous grafts (fibula, scapula, or iliac crest segments). However, when grafts are not feasible or desired, only the reconstruction plate is used to bridge the gap. Unfortunately, metal osteosynthesis and reconstruction plates, including titanium, exhibit adverse effects such as stress-shielding and limitations in accurate postoperative irradiation (especially with proton-beam therapy). To address these issues, in this study we explore, develop and validate a non-metallic solution: a topology-optimized polyetheretherketone (PEEK) load-bearing implant for large non-grafted mandibular continuity defects. In order to thoroughly validate the developed PEEK reconstruction, a dedicated MANDYBILATOR testing apparatus was developed. Using the MANDYBILATOR finite element analysis results of the implant were confirmed and the PEEK implant was mechanically validated for both static and dynamic loading. Results show that the PEEK reconstructed mandible is comparably strong as the unreconstructed mandible and is unlikely to fail due to fatigue. Our PEEK implant design has the mechanical potential to act as a substitute for the current titanium plates used in the reconstruction of continuity defects of the mandible. This may potentially lead to optimised patient-specific reconstructions, with the implants matching the bone's stiffness and possessing radiolucent properties which are useful for radiographic follow-ups and radiotherapy. Furthermore, the addition of the dynamic/cyclic MANDYBILATOR apparatus allows for more realistic application of the in-vivo loading of the mandible and can provide added insights in biomechanical behaviour of the mandible.</p

    A Contemporary Approach to Non-Invasive 3D Determination of Individual Masticatory Muscle Forces:A Proof of Concept

    Get PDF
    Over the past decade, the demand for three-dimensional (3D) patient-specific (PS) modelling and simulations has increased considerably; they are now widely available and generally accepted as part of patient care. However, the patient specificity of current PS designs is often limited to this patient-matched fit and lacks individual mechanical aspects, or parameters, that conform to the specific patient’s needs in terms of biomechanical acceptance. Most biomechanical models of the mandible, e.g., finite element analyses (FEA), often used to design reconstructive implants or total joint replacement devices for the temporomandibular joint (TMJ), make use of a literature-based (mean) simplified muscular model of the masticatory muscles. A muscle’s cross-section seems proportionally related to its maximum contractile force and can be multiplied by an intrinsic strength constant, which previously has been calculated to be a constant of 37 [N/cm2]. Here, we propose a contemporary method to determine the patient-specific intrinsic strength value of the elevator mouth-closing muscles. The hypothesis is that patient-specific individual mandible elevator muscle forces can be approximated in a non-invasive manner. MRI muscle delineation was combined with bite force measurements and 3D-FEA to determine PS intrinsic strength values. The subject-specific intrinsic strength values were 40.6 [N/cm2] and 25.6 [N/cm2] for the 29- and 56-year-old subjects, respectively. Despite using a small cohort in this proof of concept study, we show that there is great variation between our subjects’ individual muscular intrinsic strength. This variation, together with the difference between our individual results and those presented in the literature, emphasises the value of our patient-specific muscle modelling and intrinsic strength determination protocol to ensure accurate biomechanical analyses and simulations. Furthermore, it suggests that average muscular models may only be sufficiently accurate for biomechanical analyses at a macro-scale level. A future larger cohort study will put the patient-specific intrinsic strength values in perspective

    In vivo quantification of photosensitizer fluorescence in the skin-fold observation chamber using dual-wavelength excitation and NIR imaging

    Get PDF
    A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra (hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dualwavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed

    Mandibular dental implant placement immediately after teeth removal in head and neck cancer patients

    Get PDF
    BACKGROUND: Little is known about immediate implant placement in head and neck cancer patients. We studied implant survival and functional outcomes of overdentures fabricated on implants placed immediately after removal of the lower dentition during ablative surgery or preceding primary radiotherapy (RT). METHODS: Inclusion criteria were primary head and neck cancer, dentate lower jaw, and indication for removal of remaining teeth. Two implants to support a mandibular overdenture were placed immediately after extraction of the dentition during ablative surgery, or prior to starting primary radiotherapy. Standardized questionnaires and clinical assessments were conducted (median follow-up 18.5 months, IQR 13.3). RESULTS: Fifty-eight implants were placed in 29 patients. Four implants were lost (implant survival rate 93.1%). In 9 patients, no functional overdenture could be made. All patients were satisfied with their dentures. CONCLUSIONS: Combining dental implant placement with removal of remaining teeth preceding head neck oncology treatment results in a favorable treatment outcome

    Prosthodontic rehabilitation of head and neck cancer patients-Challenges and new developments

    Get PDF
    Head and neck cancer treatment can severely alter oral function and aesthetics, and reduce quality of life. The role of maxillofacial prosthodontists in multidisciplinary treatment of head and neck cancer patients is essential when it comes to oral rehabilitation and its planning. This role should preferably start on the day of first intake. Maxillofacial prosthodontists should be involved in the care pathway to shape and outline the prosthetic and dental rehabilitation in line with the reconstructive surgical options. With the progress of three-dimensional technology, the pretreatment insight in overall prognosis and possibilities of surgical and/or prosthetic rehabilitation has tremendously increased. This increased insight has helped to improve quality of cancer care. This expert review addresses the involvement of maxillofacial prosthodontists in treatment planning, highlighting prosthodontic rehabilitation of head and neck cancer patients from start to finish
    corecore