1,340 research outputs found
Incidence des endémiques étroites parmi les espèces sauvages apparentées des plantes cultivées les plus utilisées en Méditerranée
Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry
The radii of giant planets, as measured from transit observations, may vary
with wavelength due to Rayleigh scattering or variations in opacity. Such an
effect is predicted to be large enough to detect using ground-based
observations at multiple wavelengths. We present defocussed photometry of a
transit in the HAT-P-5 system, obtained simultaneously through Stromgren u,
Gunn g and r, and Johnson I filters. Two more transit events were observed
through a Gunn r filter. We detect a substantially larger planetary radius in
u, but the effect is greater than predicted using theoretical model atmospheres
of gaseous planets. This phenomenon is most likely to be due to systematic
errors present in the u-band photometry, stemming from variations in the
transparency of Earth's atmosphere at these short wavelengths. We use our data
to calculate an improved orbital ephemeris and to refine the measured physical
properties of the system. The planet HAT-P-5b has a mass of 1.06 +/- 0.11 +/-
0.01 Mjup and a radius of 1.252 +/- 0.042 +/- 0.008 Rjup (statistical and
systematic errors respectively), making it slightly larger than expected
according to standard models of coreless gas-giant planets. Its equilibrium
temperature of 1517 +/- 29 K is within 60K of that of the extensively-studied
planet HD 209458b.Comment: Version 2 corrects the accidental omission of one author in the arXiv
metadata. Accepted for publication in MNRAS. 9 pages, 4 figures, 7 tables.
The properties of HAT-P-5 have been added to the Transiting Extrasolar Planet
Catalogue at http://www.astro.keele.ac.uk/~jkt/tepcat
Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. II. 2MASS J 17072343-0558249AB
We present IRTF SpeX observations of the M/L binary system 2MASS
J17072343-0558249. SpeX imaging resolves the system into a 1"01+/-0.17 visual
binary in which both components have red near infrared colors. Resolved
low-resolution (R~150) 0.8-2.5 micron spectroscopy reveals strong H2O, CO and
FeH bands and alkali lines in the spectra of both components, characteristic of
late-type M and L dwarfs. A comparison to a sample of late-type field dwarf
spectra indicates spectral types M9 and L3. Despite the small proper motion of
the system (0"100+/-0"009 yr^{-1}), imaging observations over 2.5 yr provide
strong evidence that the two components share common proper motion. Physical
association is also likely due to the small spatial volume occupied by the two
components (based on spectrophotometric distances estimates of 15+/-1 pc) as
compared to the relatively low spatial density of low mass field stars. The
projected separation of the system is 15+/-3 AU, similar to other late-type M
and L binaries. Assuming a system age of 0.5-5 Gyr, we estimate the masses of
the binary components to be 0.072-0.083 and 0.064-0.077 M_sun, with an orbital
period of roughly 150-300 yr. While this is nominally too long a baseline for
astrometric mass measurements, the proximity and relatively wide angular
separation of the 2MASS J1707-0558AB pair makes it an ideal system for studying
the M dwarf/L dwarf transition at a fixed age and metallicity
Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained
with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5
micron. These lightcurves are used to measure the amplitude, shape and phase of
the thermal phase effect for WASP-18b. We find that our results for the thermal
phase effect are limited to an accuracy of about 0.01% by systematic noise
sources of unknown origin. At this level of accuracy we find that the thermal
phase effect has a peak-to-peak amplitude approximately equal to the secondary
eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at
the same phase as mid-occultation to within about 5 degrees at 3.6 micron and
to within about 10 degrees at 4.5 micron. The shape and amplitude of the
thermal phase curve imply very low levels of heat redistribution within the
atmosphere of the planet. We also perform a separate analysis to determine the
system geometry by fitting a lightcurve model to the data covering the
occultation and the transit. The secondary eclipse depths we measure at 3.6
micron and 4.5 micron are in good agreement with previous measurements and
imply a very low albedo for WASP-18b. The parameters of the system (masses,
radii, etc.) derived from our analysis are in also good agreement with those
from previous studies, but with improved precision. We use new high-resolution
imaging and published limits on the rate of change of the mean radial velocity
to check for the presence of any faint companion stars that may affect our
results. We find that there is unlikely to be any significant contribution to
the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find
that there is no evidence for variations in the times of eclipse from a linear
ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA
European specific landrace conservation strategy for target crops (Avena, Beta, Brassica and Medicago)
The host galaxy of GRB010222: The strongest damped Lyman-alpha system known
Analysis of the absorption lines in the afterglow spectrum of the gamma-ray
burst GRB010222 indicates that its host galaxy (at a redshift of z=1.476) is
the strongest damped Lyman-alpha (DLA) system known, having a very low
metallicity and modest dust content. This conclusion is based on the detection
of the red wing of Lyman-alpha plus a comparison of the equivalent widths of
ultraviolet Mg I, Mg II, and Fe II lines with those in other DLAs. The column
density of H I, deduced from a fit to the wing of Lyman-alpha, is (5 +/- 2)
10^22 cm^-2. The ratio of the column densities of Zn and Cr lines suggests that
the dust content in our line of sight through the galaxy is low. This could be
due to either dust destruction by the ultraviolet emission of the afterglow or
to an initial dust composition different to that of the diffuse interstellar
material, or a combination of both.Comment: Submitted to MNRAS 12 page
Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud
(LMC). We carried out new CO( = 3-2) and CO( = 1-0)
observations using ASTE and ALMA. We have confirmed the existence of a giant
molecular cloud (GMC) at 245 km s towards the
southeast of the SNR using ASTE CO( = 3-2) data at an angular
resolution of 25 (6 pc in the LMC). Using the ALMA CO(
= 1-0) data, we have spatially resolved CO clouds along the southeastern edge
of the SNR with an angular resolution of 1.8 (0.4 pc in the
LMC). The molecular clouds show an expanding gas motion in the
position-velocity diagram with an expansion velocity of km s.
The spatial extent of the expanding shell is roughly similar to that of the
SNR. We also find tiny molecular clumps in the directions of optical nebula
knots. We present a possible scenario that N103B exploded in the wind-bubble
formed by the accretion winds from the progenitor system, and is now
interacting with the dense gas wall. This is consistent with a
single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The
Astrophysical Journal (ApJ
- …
