28,881 research outputs found
The Emotional Self-Efficacy Scale: Adaptation and Validation for Young Adolescents
Emotional self-efficacy (ESE) is an important aspect of emotional functioning, with current measures for children and adolescents focused on the measurement of self-beliefs in relation to the management of emotions. In the present study, we report the psychometric properties of the first adaptation of the Emotional Self-Efficacy Scale for youth (Youth-ESES) that measures additional aspects of ESE, such as perceiving and understanding emotions and helping others modulate their emotions. Participants were 192 young adolescents aged 11 to 13 years from a U.K. state school. They completed the Youth-ESES and measures of ability emotional intelligence (EI) and cognitive ability. Results support the same four-factor structure that has been previously documented using the adult version of the ESES, with the four subscales being largely independent from cognitive ability and only moderately related to ability EI. However, the four subscales were less differentiated in the present study compared with adult data previously published, suggesting that there is a strong general factor underlying young adolescents’ ESE scores. Overall, the results suggest that the adapted Youth-ESES can be reliably used with youth, and that confidence in how a young person feels about his or her emotional functioning remains distinct from emotional skill
Inclusion of an Introduction to Infrastructure Course in a Civil and Environmental Engineering Curriculum
Civil infrastructure refers to the built environment (sometimes referred to as public works) and consists of roads, bridges, buildings, dams, levees, drinking water treatment facilities, wastewater treatment facilities, power generation and transmission facilities, communications, solid waste facilities, hazardous waste facilities, and other sectors. Although there is a need to train engineers who have a holistic view of infrastructure, there is evidence that civil and environmental engineering (CEE) programs have not fully addressed this increasingly recognized need. One effective approach to address this educational gap is to incorporate a course related to infrastructure into the curriculum for first-year or second-year civil and environmental engineering students. Therefore, this study assesses the current status of teaching such courses in the United States and identifies the incentives for, and the barriers against, incorporating an introduction to infrastructure course into schools’ current CEE curricula. Two distinct activities enabled these objectives. First, a questionnaire was distributed to CEE programs across the United States, to which 33 responses were received. The results indicated that although the majority of participants believe that offering such a course will benefit students by increasing the breadth of the curriculum and by providing a holistic view of CEE, barriers such as the maximum allowable credits for graduation, the lack of motivation within a department—either because such a course did not have a champion or because the department had no plans to revise their curriculum—and a lack of expertise among faculty members inhibited inclusion of the course in curricula. Second, three case studies demonstrating successful inclusion of an introduction to infrastructure course into the CEE curriculum were evaluated. Cases were collected from Marquette University, University of Wisconsin-Platteville, and West Point CEE programs, and it was found that the key to success in including such a course is a motivated team of faculty members who are committed to educating students about different aspects of infrastructure. The results of the study can be used as a road map to help universities successfully incorporate an introduction to infrastructure course in their CEE programs
The Hall instability of weakly ionized, radially stratified, rotating disks
Cool weakly ionized gaseous rotating disk, are considered by many models as
the origin of the evolution of protoplanetary clouds. Instabilities against
perturbations in such disks play an important role in the theory of the
formation of stars and planets. Thus, a hierarchy of successive fragmentations
into smaller and smaller pieces as a part of the Kant-Laplace theory of
formation of the planetary system remains valid also for contemporary
cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently
Hall-MHD instabilities have been thoroughly studied as providers of an
efficient mechanism for radial transfer of angular momentum, and of density
radial stratification. In the current work, the Hall instability against
nonaxisymmetric perturbations in compressible rotating fluids in external
magnetic field is proposed as a viable mechanism for the azimuthal
fragmentation of the protoplanetary disk and thus perhaps initiating the road
to planet formation. The Hall instability is excited due to the combined effect
of the radial stratification of the disk and the Hall electric field, and its
growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure
Anthelmintic resistance in ovine gastrointestinal nematodes in inland southern Queensland
Objective To establish the prevalence of anthelmintic resistance in ovine gastrointestinal nematodes in southern Queensland. Design An observational parasitological study using the faecal egg count reduction test. Methods Sheep farms (n = 20) enrolled in this study met the twin criteria of using worm testing for drench decisions and having concerns about anthelmintic efficacy. On each farm, 105 sheep were randomly allocated to one of six treatment groups or an untreated control group. Faecal samples were collected on day 0 and days 10–14 for worm egg counts and larval differentiation. Single- and multi-combination anthelmintics, persistent and non-persistent, oral liquid or capsule, pour-on and injectable formulations were tested. Monepantel was not tested. Farmers also responded to a questionnaire on drenching practices. Results Haemonchus contortus was the predominant species. Efficacy <95% was recorded on 85% of farms for one or more anthelmintics and on 10% of farms for six anthelmintics. No resistance was identified on three farms. The 4-way combination product was efficacious (n = 4 farms). Napthalophos resistance was detected on one farm only. Resistance to levamisole (42% of farms), moxidectin injection (50% of farms) and the closantel/abamectin combination (67% of farms) was identified. Moxidectin oral was efficacious against Trichostrongylus colubriformis, which was predominant on only one farm. Of the farms tested, 55% ran meat breeds, 60% dosed more than the recommended dose rate and 70% always, mostly or when possible practised a ‘drench and move’ strategy. Conclusion This level of anthelmintic resistance in southern Queensland will severely compromise worm control and force increased use of monepantel
Understanding depletion forces beyond entropy
The effective interaction energy of a colloidal sphere in a suspension
containing small amounts of non-ionic polymers and a flat glass surface has
been measured and calculated using total internal reflection microscopy (TIRM)
and a novel approach within density functional theory (DFT), respectively.
Quantitative agreement between experiment and theory demonstrates that the
resulting repulsive part of the depletion forces cannot be interpreted entirely
in terms of entropic arguments but that particularly at small distances
( 100 nm) attractive dispersion forces have to be taken into account
Multispecies virial expansions
We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs
A Multi-Armed Bandit to Smartly Select a Training Set from Big Medical Data
With the availability of big medical image data, the selection of an adequate
training set is becoming more important to address the heterogeneity of
different datasets. Simply including all the data does not only incur high
processing costs but can even harm the prediction. We formulate the smart and
efficient selection of a training dataset from big medical image data as a
multi-armed bandit problem, solved by Thompson sampling. Our method assumes
that image features are not available at the time of the selection of the
samples, and therefore relies only on meta information associated with the
images. Our strategy simultaneously exploits data sources with high chances of
yielding useful samples and explores new data regions. For our evaluation, we
focus on the application of estimating the age from a brain MRI. Our results on
7,250 subjects from 10 datasets show that our approach leads to higher accuracy
while only requiring a fraction of the training data.Comment: MICCAI 2017 Proceeding
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout
As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
A new insight into the observation of spectroscopic strength reduction in atomic nuclei: implication for the physical meaning of spectroscopic factors
Experimental studies of one nucleon knockout from magic nuclei suggest that
their nucleon orbits are not fully occupied. This conflicts a commonly accepted
view of the shell closure associated with such nuclei. The conflict can be
reconciled if the overlap between initial and final nuclear states in a
knockout reaction are calculated by a non-standard method. The method employs
an inhomogeneous equation based on correlation-dependent effective
nucleon-nucleon (NN) interactions and allows the simplest wave functions, in
which all nucleons occupy only the lowest nuclear orbits, to be used. The
method also reproduces the recently established relation between reduction of
spectroscopic strength, observed in knockout reactions on other nuclei, and
nucleon binding energies. The implication of the inhomogeneous equation method
for the physical meaning of spectroscopic factors is discussed.Comment: 4 pages, accepted by Phys. Rev. Let
- …
