488 research outputs found
Instabilities in neutrino-plasma density waves
One examines the interaction and possible resonances between supernova
neutrinos and electron plasma waves. The neutrino phase space distribution and
its boundary regions are analyzed in detail. It is shown that the boundary
regions are too wide to produce non-linear resonant effects. The growth or
damping rates induced by neutrinos are always proportional to the neutrino flux
and .Comment: 9 pages, a few words modified to match PRD publicatio
Engagement of nucleotide-binding oligomerization domain-containing protein 1 (NOD1) by receptor-interacting protein 2 (RIP2) is insufficient for signal transduction.
Following activation, the cytoplasmic pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1) interacts with its adaptor protein receptor-interacting protein 2 (RIP2) to propagate immune signaling and initiate a proinflammatory immune response. This interaction is mediated by the caspase recruitment domain (CARD) of both proteins. Polymorphisms in immune proteins can affect receptor function and predispose individuals to specific autoinflammatory disorders. In this report, we show that mutations in helix 2 of the CARD of NOD1 disrupted receptor function but did not interfere with RIP2 interaction. In particular, N43S, a rare polymorphism, resulted in receptor dysfunction despite retaining normal cellular localization, protein folding, and an ability to interact with RIP2. Mutation of Asn-43 resulted in an increased tendency to form dimers, which we propose is the source of this dysfunction. We also demonstrate that mutation of Lys-443 and Tyr-474 in RIP2 disrupted the interaction with NOD1. Mapping the key residues involved in the interaction between NOD1 and RIP2 to the known structures of CARD complexes revealed the likely involvement of both type I and type III interfaces in the NOD1·RIP2 complex. Overall we demonstrate that the NOD1-RIP2 signaling axis is more complex than previously assumed, that simple engagement of RIP2 is insufficient to mediate signaling, and that the interaction between NOD1 and RIP2 constitutes multiple CARD-CARD interfaces.This work was funded by a Wellcome Trust Career Development Fellowship (WT085090MA) to TPM. TAK is supported by the German Research Foundation (DFG), grant SFB670 and acknowledges support by the Koeln Fortune Program / Faculty of Medicine, University of CologneThis is the final published version. It's also available from the Journal of Biological Chemistry website at http://www.jbc.org/content/289/33/22900.abstract
Femtolensing and Picolensing by Axion Miniclusters
Non-linear effects in the evolution of the axion field in the early Universe
may lead to the formation of gravitationally bound clumps of axions, known as
``miniclusters.'' Minicluster masses and radii should be in the range and cm, and in plausible
early-Universe scenarios a significant fraction of the mass density of the
Universe may be in the form of axion miniclusters. If such axion miniclusters
exist, they would have the physical properties required to be detected by
``femtolensing.''Comment: 7 pages plus 2 figures (Fig.1 avalible upon request), LaTe
Aerodynamic Tests of the Space Launch System for Database Development
The Aerosciences Branch (EV33) at the George C. Marshall Space Flight Center (MSFC) has been responsible for a series of wind tunnel tests on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) vehicles. The primary purpose of these tests was to obtain aerodynamic data during the ascent phase and establish databases that can be used by the Guidance, Navigation, and Mission Analysis Branch (EV42) for trajectory simulations. The paper describes the test particulars regarding models and measurements and the facilities used, as well as database preparations
Electron Neutrino Mass Measurement by Supernova Neutrino Bursts and Implications on Hot Dark Matter
We present a new strategy for measuring the electron neutrino mass (\mnue)
by future detection of a Galactic supernova in large underground detectors such
as the Super-Kamiokande (SK). This method is nearly model-independent and one
can get a mass constraint in a straightforward way from experimental data
without specifying any model parameters for profiles of supernova neutrinos. We
have tested this method using virtual data generated from a numerical model of
supernova neutrino emission by realistic Monte-Carlo simulations of the SK
detection. It is shown that this method is sensitive to \mnue of 3 eV
for a Galactic supernova, and this range is as low as the prediction of the
cold+hot dark matter scenario with a nearly degenerate mass hierarchy of
neutrinos, which is consistent with the current observations of solar and
atmospheric neutrino anomalies and density fluctuations in the universe.Comment: 4 pages including 1 figure, accepted by Phys. Rev. Let
Dressing of Ultracold Atoms by their Rydberg States in a Ioffe-Pritchard Trap
We explore how the extraordinary properties of Rydberg atoms can be employed
to impact the motion of ultracold ground state atoms. Specifically, we use an
off-resonant two-photon laser dressing to map features of the Rydberg states on
ground state atoms. It is demonstrated that the interplay between the spatially
varying quantization axis of the considered Ioffe-Pritchard field and the fixed
polarizations of the laser transitions provides the possibility of
substantially manipulating the ground state trapping potential.Comment: 11 pages, 4 figure
Sarcopenic obesity and physical performance in middle aged women: a cross-sectional study in Northeast Brazil
BACKGROUND: Sarcopenia and obesity have been independently associated with physical function decline, however little information is currently available on the relationship between sarcopenic obesity and physical performance, mainly in middle aged women. The present study aims to estimate the prevalence of sarcopenic obesity and to explore the relationship between sarcopenic obesity and physical performance in middle-aged women from Northeast Brazil. METHODS: A cross-sectional study of women (40–65 years) living in Parnamirim, a city in Northeast Brazil (n = 491). Physical performance was assessed by grip strength, knee extensor and flexor strength (isometric dynamometry), gait speed, and chair stands. Using bioelectrical impedance analysis (BIA), appendicular skeletal muscle mass divided by height squared (kg / m(2)) was used to define sarcopenia. Waist circumference ≥ 88 cm was defined as abdominal obesity. Sarcopenic obesity was defined as the coexistence of obesity and sarcopenia. The physical performance outcomes were regressed in four groups defined by combinations of sarcopenia and obesity, adjusting for potential confounders (age, education and menopausal status). RESULTS: Prevalence rates of the four obesity-sarcopenia groups were: Sarcopenic obesity (7.1 %), obesity (67.4 %), sarcopenia (12.4 %) and normal (13 %). Women with sarcopenic obesity had significantly lower grip strength, weaker knee extension and flexion and longer time to raise from a chair compared with non-obese and non-sarcopenic women (p.values < 0.001). Except for the chair stands, these statistically significant differences were also found between sarcopenic obese and obese women. There was no significant difference for gait speed across the four groups (p = 0.50). CONCLUSION: Sarcopenic obesity was present in 7 % of this population of middle-aged women from Northeast Brazil and it was associated with poor physical performance. Sarcopenic obesity may occur in middle-aged women with performance limitations beyond pure sarcopenia-related muscle mass or obesity alone
A Fresh Look at Axions and SN 1987A
We re-examine the very stringent limits on the axion mass based on the
strength and duration of the neutrino signal from SN 1987A, in the light of new
measurements of the axial-vector coupling strength of nucleons, possible
suppression of axion emission due to many-body effects, and additional emission
processes involving pions. The suppression of axion emission due to nucleon
spin fluctuations induced by many-body effects degrades previous limits by a
factor of about 2. Emission processes involving thermal pions can strengthen
the limits by a factor of 3-4 within a perturbative treatment that neglects
saturation of nucleon spin fluctuations. Inclusion of saturation effects,
however, tends to make the limits less dependent on pion abundances. The
resulting axion mass limit also depends on the precise couplings of the axion
and ranges from 0.5x10**(-3) eV to 6x10**(-3) eV.Comment: 32 latex pages, 13 postscript figures included, uses revtex.sty,
submitted to Physical Review
Plasma wave instabilities induced by neutrinos
Quantum field theory is applied to study the interaction of an electron
plasma with an intense neutrino flux. A connection is established between the
field theory results and classical kinetic theory. The dispersion relation and
damping rate of the plasma longitudinal waves are derived in the presence of
neutrinos. It is shown that Supernova neutrinos are never collimated enough to
cause non-linear effects associated with a neutrino resonance. They only induce
neutrino Landau damping, linearly proportional to the neutrino flux and
.Comment: 18 pages, 3 figures, title and references correcte
- …
