45 research outputs found

    Natural selection. II. Developmental variability and evolutionary rate

    Full text link
    In classical evolutionary theory, genetic variation provides the source of heritable phenotypic variation on which natural selection acts. Against this classical view, several theories have emphasized that developmental variability and learning enhance nonheritable phenotypic variation, which in turn can accelerate evolutionary response. In this paper, I show how developmental variability alters evolutionary dynamics by smoothing the landscape that relates genotype to fitness. In a fitness landscape with multiple peaks and valleys, developmental variability can smooth the landscape to provide a directly increasing path of fitness to the highest peak. Developmental variability also allows initial survival of a genotype in response to novel or extreme environmental challenge, providing an opportunity for subsequent adaptation. This initial survival advantage arises from the way in which developmental variability smooths and broadens the fitness landscape. Ultimately, the synergism between developmental processes and genetic variation sets evolutionary rate

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Landscapes, Learning Costs, and Genetic Assimilation

    Full text link

    Influence of learning on range expansion and adaptation to novel habitats

    Get PDF
    Learning has been postulated to ‘drive’ evolution, but its influence on adaptive evolution in heterogeneous environments has not been formally examined. We used a spatially explicit individual-based model to study the effect of learning on the expansion and adaptation of a species to a novel habitat. Fitness was mediated by a behavioural trait (resource preference), which in turn was determined by both the genotype and learning. Our findings indicate that learning substantially increases the range of parameters under which the species expands and adapts to the novel habitat, particularly if the two habitats are separated by a sharp ecotone (rather than a gradient). However, for a broad range of parameters, learning reduces the degree of genetically-based local adaptation following the expansion and facilitates maintenance of genetic variation within local populations. Thus, in heterogeneous environments learning may facilitate evolutionary range expansions and maintenance of the potential of local populations to respond to subsequent environmental changes

    Explorations into interactions between learning and evolution using genetic algorithms

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN031550 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    La Investigación Educativa en el Sur del País, Retos y Perspectivas

    No full text
    5to Foro de Investigación Educativ
    corecore