3,891 research outputs found
Pre-main-sequence isochrones -- II. Revising star and planet formation timescales
We have derived ages for 13 young (<30 Myr) star-forming regions and find
they are up to a factor two older than the ages typically adopted in the
literature. This result has wide-ranging implications, including that
circumstellar discs survive longer (~10-12 Myr) and that the average Class I
lifetime is greater (~1 Myr) than currently believed.
For each star-forming region we derived two ages from colour-magnitude
diagrams. First we fitted models of the evolution between the zero-age
main-sequence and terminal-age main-sequence to derive a homogeneous set of
main-sequence ages, distances and reddenings with statistically meaningful
uncertainties. Our second age for each star-forming region was derived by
fitting pre-main-sequence stars to new semi-empirical model isochrones. For the
first time (for a set of clusters younger than 50 Myr) we find broad agreement
between these two ages, and since these are derived from two distinct mass
regimes that rely on different aspects of stellar physics, it gives us
confidence in the new age scale. This agreement is largely due to our adoption
of empirical colour-Teff relations and bolometric corrections for
pre-main-sequence stars cooler than 4000 K.
The revised ages for the star-forming regions in our sample are: ~2 Myr for
NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon
Nebula; M 8), and NGC 2244 (Rosette Nebula); ~6 Myr for {\sigma} Ori, Cep OB3b,
and IC 348; ~10 Myr for {\lambda} Ori (Collinder 69); ~11 Myr for NGC 2169; ~12
Myr for NGC 2362; ~13 Myr for NGC 7160; ~14 Myr for {\chi} Per (NGC 884); and
~20 Myr for NGC 1960 (M 36).Comment: 28 pages, 18 figures, 34 tables, accepted for publication in MNRAS.
All photometric catalogues presented in this paper are available online at
the Cluster Collaboration homepage
http://www.astro.ex.ac.uk/people/timn/Catalogues
Development and application of the GIM code for the Cyber 203 computer
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented
Foot pad dermatitis in growing turkeys is associated with cytokine and cellular changes indicative of an inflammatory immune response
No evidence for intense, cold accretion onto YSOs from measurements of Li in T-Tauri stars
We have used medium resolution spectra to search for evidence that
proto-stellar objects accrete at high rates during their early 'assembly
phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri
stars are key signatures of 'cold' high-rate accretion occurring early in a
star's evolution.
We found no evidence in 168 stars in NGC 2264 and the Orion Nebula Cluster
for strong lithium depletion through analysis of veiling corrected 6708
angstrom lithium spectral line strengths. This suggests that 'cold' accretion
at high rates (M_dot > 5 x 10-4 M_sol yr-1) occurs in the assembly phase of
fewer than 0.5 per cent of 0.3 < M < 1.9 M_sol stars.
We also find that the dispersion in the strength of the 6708 angstrom lithium
line might imply an age spread that is similar in magnitude to the apparent age
spread implied by the luminosity dispersion seen in colour magnitude diagrams.
Evidence for weak lithium depletion (< 10 per cent in equivalent width) that is
correlated with luminosity is also apparent, but we are unable to determine
whether age spreads or accretion at rates less than 5 x 10-4 M_sol yr-1 are
responsible.Comment: 13 pages, 10 figures; Accepted for publication in Monthly Notices of
the Royal Astronomical Society, 2013 June 0
When the path is never shortest: a reality check on shortest path biocomputation
Shortest path problems are a touchstone for evaluating the computing
performance and functional range of novel computing substrates. Much has been
published in recent years regarding the use of biocomputers to solve minimal
path problems such as route optimisation and labyrinth navigation, but their
outputs are typically difficult to reproduce and somewhat abstract in nature,
suggesting that both experimental design and analysis in the field require
standardising. This chapter details laboratory experimental data which probe
the path finding process in two single-celled protistic model organisms,
Physarum polycephalum and Paramecium caudatum, comprising a shortest path
problem and labyrinth navigation, respectively. The results presented
illustrate several of the key difficulties that are encountered in categorising
biological behaviours in the language of computing, including biological
variability, non-halting operations and adverse reactions to experimental
stimuli. It is concluded that neither organism examined are able to efficiently
or reproducibly solve shortest path problems in the specific experimental
conditions that were tested. Data presented are contextualised with biological
theory and design principles for maximising the usefulness of experimental
biocomputer prototypes.Comment: To appear in: Adamatzky, A (Ed.) Shortest path solvers. From software
to wetware. Springer, 201
Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere
We present highlights from a large set of simulations of a hot Jupiter
atmosphere, nominally based on HD 209458b, aimed at exploring both the
evolution of the deep atmosphere, and the acceleration of the zonal flow or
jet. We find the occurrence of a super-rotating equatorial jet is robust to
changes in various parameters, and over long timescales, even in the absence of
strong inner or bottom boundary drag. This jet is diminished in one simulation
only, where we strongly force the deep atmosphere equator-to-pole temperature
gradient over long timescales. Finally, although the eddy momentum fluxes in
our atmosphere show similarities with the proposed mechanism for accelerating
jets on tidally-locked planets, the picture appears more complex. We present
tentative evidence for a jet driven by a combination of eddy momentum transport
and mean flow.Comment: 26 pages, 22 Figures. Accepted for publication in Astronomy and
Astrophysic
A lithium depletion boundary age of 22 Myr for NGC 1960
We present a deep Cousins RI photometric survey of the open cluster NGC 1960,
complete to R_C \simeq 22, I_C \simeq 21, that is used to select a sample of
very low-mass cluster candidates. Gemini spectroscopy of a subset of these is
used to confirm membership and locate the age-dependent "lithium depletion
boundary" (LDB) --the luminosity at which lithium remains unburned in its
low-mass stars. The LDB implies a cluster age of 22 +/-4 Myr and is quite
insensitive to choice of evolutionary model. NGC 1960 is the youngest cluster
for which a LDB age has been estimated and possesses a well populated upper
main sequence and a rich low-mass pre-main sequence. The LDB age determined
here agrees well with precise age estimates made for the same cluster based on
isochrone fits to its high- and low-mass populations. The concordance between
these three age estimation techniques, that rely on different facets of stellar
astrophysics at very different masses, is an important step towards calibrating
the absolute ages of young open clusters and lends confidence to ages
determined using any one of them.Comment: Accepted for publication in MNRA
Bayesian fitting of Taurus brown dwarf spectral energy distributions
We present derived stellar and disc parameters for a sample of Taurus brown
dwarfs both with and without evidence of an associated disc. These parameters
have been derived using an online fitting tool
(http://bd-server.astro.ex.ac.uk/), which includes a statistically robust
derivation of uncertainties, an indication of pa- rameter degeneracies, and a
complete treatment of the input photometric and spectroscopic observations. The
observations of the Taurus members with indications of disc presence have been
fitted using a grid of theoretical models including detailed treatments of
physical processes accepted for higher mass stars, such as dust sublimation,
and a simple treatment of the accretion flux. This grid of models has been
designed to test the validity of the adopted physical mechanisms, but we have
also constructed models using parameterisation, for example semi-empirical dust
sublimation radii, for users solely interested in parameter derivation and the
quality of the fit. The parameters derived for the naked and disc brown dwarf
systems are largely consistent with literature observations. However, our inner
disc edge locations are consistently closer to the star than previous results
and we also derive elevated accretion rates over non-SED based accretion rate
derivations. For inner edge locations we attribute these differences to the
detailed modelling we have performed of the disc structure, particularly at the
crucial inner edge where departures in geometry from the often adopted vertical
wall due to dust sublimation (and therefore accretion flux) can compensate for
temperature (and therefore distance) changes to the inner edge of the dust
disc. In the case of the elevated derived accretion rates, in some cases, this
may be caused by the intrinsic stellar luminosities of the targets exceeding
that predicted by the isochrones we have adopted.Comment: The paper contains 35 pages with 15 figures and 17 tables. Accepted
for publication in MNRA
High-order volterra model predictive control and its application to a nonlinear polymerisation process
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but the existing design and implementation methods are restricted to linear process models. A chemical process involves, however, severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC), and also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design which relieves practising engineers from the need for first deriving a physical-principles based model. An on-line realisation technique for implementing the NMPC is also developed. The NMPC is then applied to a Mitsubishi Chemicals polymerisation reaction process. The results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the approach developed lie not only in control performance superior to existing NMPC methods, but also in relieving practising engineers from the need for deriving an analytical model and then converting it to a Volterra model through which the model can only be obtained up to the second order
Using the UM dynamical cores to reproduce idealised 3D flows
We demonstrate that both the current (New Dynamics), and next generation
(ENDGame) dynamical cores of the UK Met Office global circulation model, the
UM, reproduce consistently, the long-term, large-scale flows found in several
published idealised tests. The cases presented are the Held-Suarez test, a
simplified model of Earth (including a stratosphere), and a hypothetical
tidally locked Earth. Furthermore, we show that using simplifications to the
dynamical equations, which are expected to be justified for the physical
domains and flow regimes we have studied, and which are supported by the
ENDGame dynamical core, also produces matching long-term, large-scale flows.
Finally, we present evidence for differences in the detail of the planetary
flows and circulations resulting from improvements in the ENDGame formulation
over New Dynamics.Comment: 34 Pages, 23 Figures. Accepted for publication in Geoscientific Model
Development (pre-proof version
- …
