1,749 research outputs found
Early Life Relict Feature in Peptide Mass Distribution
Molecular mass of a biomolecule is characterized in mass spectroscopy by the monoisitopic mass M~mono~ and the average isotopic mass M~av~. We found that peptide masses mapped on a plane made by two parameters derived from M~mono~ and M~av~ form a peculiar global feature in form of a band-gap 5-7 ppm wide stretching across the whole peptide galaxy, with a narrow (FWHM 0.2 ppm) line in the centre. The a priori probability of such a feature to emerge by chance is less than 1:100. Peptides contributing to the central line have elemental compositions following the rules S=0; Z = (2C - N - H)/2 =0, which nine out of 20 amino acid residues satisfy. The relative abundances of amino acids in the peptides contributing to the central line correlate with the consensus order of emergence of these amino acids, with ancient amino acids being overrepresented in on-line peptides. Thus the central line is a relic of ancient life, and likely a signature of its emergence in abiotic synthesis. The linear correlation between M~av~ and M~mono~ reduces the complexity of polypeptide molecules, which may have increased the rate of their abiotic production. This, in turn may have influenced the selection of these amino acid residues for terrestrial life. Assuming the line feature is not spurious, life has emerged from elements with isotopic abundances very close to terrestrial levels, which rules out most of the Galaxy
Extrapolated High-Order Propagators for Path Integral Monte Carlo Simulations
We present a new class of high-order imaginary time propagators for
path-integral Monte Carlo simulations by subtracting lower order propagators.
By requiring all terms of the extrapolated propagator be sampled uniformly, the
subtraction only affects the potential part of the path integral. The
negligible violation of positivity of the resulting path integral at small time
steps has no discernable affect on the accuracy of our method. Thus in
principle arbitrarily high order algorithms can be devised for path-integral
Monte Carlo simulations. We verify this claim is by showing that fourth, sixth,
and eighth order convergence can indeed be achieved in solving for the ground
state of strongly interacting quantum many-body systems such as bulk liquid
He.Comment: 9 pages and 3 figures. Submitted to J. Chem. Phy
Evolutionary Trends in the Physciaceae
The current delimitation of the family Physciaceae has been generally accepted since detailed descriptions of ascus characters allowed for a more natural circumscription of lichenized ascomycetes. The generic relations within the family are, however, still controversial and depend on the importance different authors attribute to specific morphological or chemical characteristics. The aim of this paper is to describe ascospore ontogeny and to test the present taxonomic structure of the family against a parsimony-based cladistic analysis, which includes three different scenarios of a priori character weighting. A study of ascospore ontogeny revealed two distinct developmental lines. One line revealed a delayed septum formation, which clearly showed transitions from spores with apical and median thickenings to spores without apical, but still well developed median thickenings, and to spores without any thickenings. In the second developmental line with an early septum formation again taxa with no thickenings, median thickenings, and both median and apical thickenings were found. Although these characters were constant at a species level, median wall thickenings especially varied among otherwise closely related taxa. In the cladistic analyses the current taxonomic structure of the Physciaceae was only obtained after the five character groups, namely morphology and anatomy of the vegetative thallus, conidiomata and conidia, morphology and anatomy of the apothecia, ontogeny of the ascospores, and secondary metabolites of the thallus, were given equal importance, and after a subjective a priori weighting further increased the weight of the three characters ‘conidial shape', ‘presence of apical thickenings', and ‘spore septation delayed'. This structure was not supported by a cladistic analysis with equally weighted characters but reflected the biased character weighting of the present day Physdaceae taxonomy. The taxonomic importance of conidial characters and of anatomical and ontogenetical spore characteristics need, therefore, a careful reconsideration in futur
Recommended from our members
A synthesis: what works to deliver optimal health outcomes for uk care home residents
The detailed reviews, interviews and subsequent longitudinal case studies structured around a unifying realist analytical framework allowed us to establish a theory of commissioning for health care provision to care homes which proposes health services will work better when: staff are explicitly tasked to work with care homes at an institutional level as well as individual residents; healthcare and care home staff are empowered to co-design their working models; where explicit expertise in dementia care is available; the role of GP as a medical care provider is supported by access to a wider array of services; and they incorporate care management. There was no evidence from our study that a short term focus on avoiding admissions to acute hospitals from care homes added any value to service specification or care delivery
Young onset dementia: Public involvement in co-designing community-based support
Whilst the support requirements of people diagnosed with young onset dementia are well-documented, less is known about what needs to be in place to provide age-appropriate care. To understand priorities for service planning and commissioning and to inform the design of a future study of community-based service delivery models, we held two rounds of discussions with four groups of people affected by young onset dementia (n = 31) and interviewed memory services (n = 3) and non-profit service providers (n = 7) in two sites in England. Discussions confirmed published evidence on support requirements, but also reframed priorities for support and suggested new approaches to dementia care at the community level. This paper argues that involving people with young onset dementia in the assessment of research findings in terms of what is important to them, and inviting suggestions for solutions, provides a way for co-designing services that address the challenges of accessing support for people affected by young onset dementia
Surface Structure of Bi(111) from Helium Atom Scattering Measurements. Inelastic Close-Coupling Formalism
8 págs.; 4 figs.; 2 tabs.; Open Access funded by Creative Commons Atribution Licence 4.0© 2015 American Chemical Society. Elastic and inelastic close-coupling (CC) calculations have been used to extract information about the corrugation amplitude and the surface vibrational atomic displacement by fitting to several experimental diffraction patterns. To model the three-dimensional interaction between the He atom and the Bi(111) surface under investigation, a corrugated Morse potential has been assumed. Two different types of calculations are used to obtain theoretical diffraction intensities at three surface temperatures along the two symmetry directions. Type one consists of solving the elastic CC (eCC) and attenuating the corresponding diffraction intensities by a global Debye-Waller (DW) factor. The second one, within a unitary theory, is derived from merely solving the inelastic CC (iCC) equations, where no DW factor is necessary to include. While both methods arrive at similar predictions for the peak-to-peak corrugation value, the variance of the value obtained by the iCC method is much better. Furthermore, the more extensive calculation is better suited to model the temperature induced signal asymmetries and renders the inclusion for a second Debye temperature for the diffraction peaks futile.This research was supported by the European Commission and
the Styrian Government within the ERDF program. S.M.A.
acknowledges MICINN (Spain) through Grant No. FIS2011-
29596-C02-01. A.T. acknowledges financial support provided
by the FWF (Austrian Science Fund) within the project J3479-
N20.Peer Reviewe
On the semiclassical mass of -kinks
One-loop mass shifts to the classical masses of stable kinks arising in a
massive non-linear -sigma model are computed. Ultraviolet
divergences are controlled using the heat kernel/zeta function regularization
method. A comparison between the results achieved from exact and
high-temperature asymptotic heat traces is analyzed in depth.Comment: RevTex file, 15 pages, 2 figures. Version to appear in Journal of
Physics
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
Rational F-Theory GUTs without exotics
We construct F-theory GUT models without exotic matter, leading to the MSSM
matter spectrum with potential singlet extensions. The interplay of engineering
explicit geometric setups, absence of four-dimensional anomalies, and realistic
phenomenology of the couplings places severe constraints on the allowed local
models in a given geometry. In constructions based on the spectral cover we
find no model satisfying all these requirements. We then provide a survey of
models with additional U(1) symmetries arising from rational sections of the
elliptic fibration in toric constructions and obtain phenomenologically
appealing models based on SU(5) tops. Furthermore we perform a bottom-up
exploration beyond the toric section constructions discussed in the literature
so far and identify benchmark models passing all our criteria, which can serve
as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur
- …
