627 research outputs found
Sound speed measurements in liquid oxygen-liquid nitrogen mixtures
The sound speed in liquid oxygen (LOX), liquid nitrogen (LN2), and five LOX-LN2 mixtures was measured by an ultrasonic pulse-echo technique at temperatures in the vicinity of -195.8C, the boiling point of N2 at a pressure of I atm. Under these conditions, the measurements yield the following relationship between sound speed in meters per second and LN2 content M in mole percent: c = 1009.05-1.8275M+0.0026507 M squared. The second speeds of 1009.05 m/sec plus or minus 0.25 percent for pure LOX and 852.8 m/sec plus or minus 0.32 percent for pure LN2 are compared with those reported by past investigators. Measurement of sound speed should prove an effective means for monitoring the contamination of LOX by Ln2
Ultrasound instrumentation for the 7 inch Mach seven tunnel
The use of an Apple II+ microcomputer to collect data during the operation of the 7 inch Mach Seven Tunnel is discussed. A method by which the contamination of liquid oxygen is monitored with sound speed techniques is investigated. The electrical equivalent of a transducer bonded to a high pressure fill plug is studied. The three areas are briefly explained and data gathered for each area are presented
Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU
International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations
Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models
We use Monte Carlo techniques and analytical methods to study the phase
diagram of multicomponent Widom-Rowlinson models on a square lattice: there are
M species all with the same fugacity z and a nearest neighbor hard core
exclusion between unlike particles. Simulations show that for M between two and
six there is a direct transition from the gas phase at z < z_d (M) to a demixed
phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there
is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In
this phase, which is driven by entropy, particles, independent of species,
preferentially occupy one of the sublattices, i.e. spatial symmetry but not
particle symmetry is broken. The transition at z_d(M) appears to be first order
for M \geq 5 putting it in the Potts model universality class. For large M the
transition between the crystalline and demixed phase at z_d(M) can be proven to
be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to
behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one
component hard square lattice gas has a transition, and to be always of the
Ising type. Explicit calculations for the Bethe lattice with the coordination
number q=4 give results similar to those for the square lattice except that the
transition at z_d(M) becomes first order at M>2. This happens for all q,
consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System
We consider particles in , interacting via attractive
pair and repulsive four-body potentials of the Kac type. Perturbing about mean
field theory, valid when the interaction range becomes infinite, we prove
rigorously the existence of a liquid-gas phase transition when the interaction
range is finite but long compared to the interparticle spacing.Comment: 11 pages, in ReVTeX, e-mail addresses: [email protected],
[email protected], [email protected]
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
Structural Features of Single-Stranded Integron Cassette attC Sites and Their Role in Strand Selection
We recently showed that cassette integration and deletion in integron platforms were occurring through unconventional site-specific recombination reactions involving only the bottom strand of attC sites. The lack of sequence conservation among attC sites led us to hypothesize that sequence-independent structural recognition determinants must exist within attC sites. The structural data obtained from a synaptic complex of the Vibrio cholerae integrase with the bottom strand of an attC site has shown the importance of extra helical bases (EHB) inside the stem-loop structure formed from the bottom strand. Here, we systematically determined the contribution of three structural elements common to all known single-stranded attC site recombination substrates (the EHBs, the unpaired central spacer (UCS), and the variable terminal structure (VTS)) to strand choice and recombination. Their roles have been evaluated in vivo in the attl x attC reaction context using the suicide conjugation assay we previously developed, but also in an attC x attC reaction using a deletion assay. Conjugation was used to deliver the attC sites in single-stranded form. Our results show that strand choice is primarily directed by the first EHB, but the presence of the two other EHBs also serves to increase this strand selection. We found that the structure of the central spacer is essential to achieve high level recombination of the bottom strand, suggesting a dual role for this structure in active site exclusion and for hindering the reverse reaction after the first strand exchange. Moreover, we have shown that the VTS has apparently no role in strand selectivity
- …
