90 research outputs found
Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity
The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats
<p>Abstract</p> <p>Background</p> <p>The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.</p> <p>Methods</p> <p>In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.</p> <p>Results</p> <p>In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.</p> <p>Conclusions</p> <p>Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.</p
The HyVac4 Subunit Vaccine Efficiently Boosts BCG-Primed Anti-Mycobacterial Protective Immunity
BACKGROUND: The current vaccine against tuberculosis (TB), BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4), consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb). Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials
A search for rare B → Dμ+μ− decays
A search for rare B→Dμ+μ− decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. No significant signals are observed in the non-resonant μ+μ− modes, and upper limits of B(B0→D ̄ ̄ ̄ ̄0μ+μ−)<5.1×10−8, B(B+→D+sμ+μ−)<3.2×10−8, B(B0s→D ̄ ̄ ̄ ̄0μ+μ−)<1.6×10−7 and fc/fu⋅B(B+c→D+sμ+μ−)<9.6×10−8 are set at the 95\% confidence level, where fc and fu are the fragmentation fractions of a B meson with a c and u quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a J/ψ→μ+μ− decay. The branching fraction of B+c→D+sJ/ψ multiplied by the fragmentation-fraction ratio is measured to be fc/fu⋅B(B+c→D+sJ/ψ)=(1.63±0.15±0.13)×10−5, where the first uncertainty is statistical and the second systematic
Observation of the decay Λb0<i>→</i> χ<sub>c1</sub>pπ<SUP><i>-</i></SUP>
The Cabibbo-suppressed decay is
observed for the first time using data from proton-proton collisions
corresponding to an integrated luminosity of 6fb, collected with the
LHCb detector at a centre-of-mass energy of 13TeV. Evidence for the
decay is also found. Using the
decay as normalisation channel, the
ratios of branching fractions are measured to be where the first uncertainty is statistical, the second is
systematic and the third is due to the uncertainties in the branching fractions
of decays
Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+
Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances
Relationship between epicardial adipose tissue, coronary artery disease and adiponectin in a Mexican population
Recommended from our members
Study of the and states in decays
The decays are studied using a data
set corresponding to an integrated luminosity of 9fb collected with the
LHCb detector in proton-proton collisions between 2011 and 2018. Precise
measurements of the ratios of branching fractions with the intermediate
, and states are reported. The decay
of with is observed for the first time with a significance of 5.1
standard deviations. The mass differences between the ,
and states are measured to be resulting in the
most precise determination of the mass. The width of the
state is found to be below 5.2MeV at 90\% confidence level. The
Breit-Wigner width of the state is measured to be which is inconsistent with zero by 5.5 standard deviations
Angular Analysis of the B+ -> K*(+)mu(+) mu(-) Decay
We present an angular analysis of the
B
+
→
K
*
+
(
→
K
0
S
π
+
)
μ
+
μ
−
decay using
9
fb
−
1
of
p
p
collision data collected with the LHCb experiment. For the first time, the full set of
C
P
-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from standard model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner
B
0
→
K
*
0
μ
+
μ
−
decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters
Precise determination of the B-s(0)-B-s(-0) oscillation frequency
Mesons comprising a beauty quark and a strange quark can oscillate between
particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency
given by the mass difference between heavy and light mass eigenstates, deltams.
Here we present ameasurement of deltams using B0s2DsPi decays produced in
proton-proton collisions collected with the LHCb detector at the Large Hadron
Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051
+- 0.0032 ps-1, where the first uncertainty is statistical and the second
systematic. This measurement improves upon the current deltams precision by a
factor of two. We combine this result with previous LHCb measurements to
determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of
the original LHCb detector.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-005.html (LHCb
public pages
- …
