3,972 research outputs found
Robustness and Adaptiveness Analysis of Future Fleets
Making decisions about the structure of a future military fleet is a
challenging task. Several issues need to be considered such as the existence of
multiple competing objectives and the complexity of the operating environment.
A particular challenge is posed by the various types of uncertainty that the
future might hold. It is uncertain what future events might be encountered; how
fleet design decisions will influence and shape the future; and how present and
future decision makers will act based on available information, their personal
biases regarding the importance of different objectives, and their economic
preferences. In order to assist strategic decision-making, an analysis of
future fleet options needs to account for conditions in which these different
classes of uncertainty are exposed. It is important to understand what
assumptions a particular fleet is robust to, what the fleet can readily adapt
to, and what conditions present clear risks to the fleet. We call this the
analysis of a fleet's strategic positioning. This paper introduces how
strategic positioning can be evaluated using computer simulations. Our main aim
is to introduce a framework for capturing information that can be useful to a
decision maker and for defining the concepts of robustness and adaptiveness in
the context of future fleet design. We demonstrate our conceptual framework
using simulation studies of an air transportation fleet. We capture uncertainty
by employing an explorative scenario-based approach. Each scenario represents a
sampling of different future conditions, different model assumptions, and
different economic preferences. Proposed changes to a fleet are then analysed
based on their influence on the fleet's robustness, adaptiveness, and risk to
different scenarios
Sequential fissions of heavy nuclear systems
In Xe+Sn central collisions from 12 to 20 MeV/A measured with the INDRA
4 multidetector, the three-fragment exit channel occurs with a significant
cross section. In this contribution, we show that these fragments arise from
two successive binary splittings of a heavy composite system. Strong Coulomb
proximity effects are observed in the three-fragment final state. By comparison
with Coulomb trajectory calculations, we show that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
compatible with quasi-simultaneous multifragmentation above 18 MeV/A.Comment: 6 pages, 5 figures, contribution to conference proceedings of the
Fifth International Workshop on Nuclear fission and Fission-Product
Spectroscop
Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods
Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity' experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the pore-space, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P-wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2-2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanis
Robustness and Adaptability Analysis of Future Military Air Transportation Fleets
Making decisions about the structure of a future military fleet is challenging. Several issues need to be considered, including multiple competing objectives and the complexity of the operating environment. A particular challenge is posed by the various types of uncertainty that the future holds. It is uncertain what future events might be encountered and how fleet design decisions will influence these events. In order to assist strategic decision-making, an analysis of future fleet options needs to account for conditions in which these different uncertainties are exposed. It is important to understand what assumptions a particular fleet is robust to, what the fleet can readily adapt to, and what conditions present risks to the fleet. We call this the analysis of a fleet’s strategic positioning. Our main aim is to introduce a framework that captures information useful to a decision maker and defines the concepts of robustness and adaptability in the context of future fleet design. We demonstrate our conceptual framework by simulating an air transportation fleet problem. We account for uncertainty by employing an explorative scenario-based approach. Each scenario represents a sampling of different future conditions and different model assumptions. Proposed changes to a fleet are then analysed based on their influence on the fleet’s robustness, adaptability, and risk to different scenarios
Long-distance quantum communication over noisy networks without long-time quantum memory
The problem of sharing entanglement over large distances is crucial for
implementations of quantum cryptography. A possible scheme for long-distance
entanglement sharing and quantum communication exploits networks whose nodes
share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A
78, 062324 (2008)] the authors put forward an important isomorphism between
storing quantum information in a dimension and transmission of quantum
information in a -dimensional network. We show that it is possible to
obtain long-distance entanglement in a noisy two-dimensional (2D) network, even
when taking into account that encoding and decoding of a state is exposed to an
error. For 3D networks we propose a simple encoding and decoding scheme based
solely on syndrome measurements on 2D Kitaev topological quantum memory. Our
procedure constitutes an alternative scheme of state injection that can be used
for universal quantum computation on 2D Kitaev code. It is shown that the
encoding scheme is equivalent to teleporting the state, from a specific node
into a whole two-dimensional network, through some virtual EPR pair existing
within the rest of network qubits. We present an analytic lower bound on
fidelity of the encoding and decoding procedure, using as our main tool a
modified metric on space-time lattice, deviating from a taxicab metric at the
first and the last time slices.Comment: 15 pages, 10 figures; title modified; appendix included in main text;
section IV extended; minor mistakes remove
Extraction of thermal and electromagnetic properties in 45Ti
The level density and gamma-ray strength function of 45Ti have been
determined by use of the Oslo method. The particle-gamma coincidences from the
46Ti(p,d gamma)45Ti pick-up reaction with 32 MeV protons are utilized to obtain
gamma-ray spectra as function of excitation energy. The extracted level density
and strength function are compared with models, which are found to describe
these quantities satisfactorily. The data do not reveal any single-particle
energy gaps of the underlying doubly magic 40Ca core, probably due to the
strong quadruple deformation
Universal properties of correlation transfer in integrate-and-fire neurons
One of the fundamental characteristics of a nonlinear system is how it
transfers correlations in its inputs to correlations in its outputs. This is
particularly important in the nervous system, where correlations between
spiking neurons are prominent. Using linear response and asymptotic methods for
pairs of unconnected integrate-and-fire (IF) neurons receiving white noise
inputs, we show that this correlation transfer depends on the output spike
firing rate in a strong, stereotyped manner, and is, surprisingly, almost
independent of the interspike variance. For cells receiving heterogeneous
inputs, we further show that correlation increases with the geometric mean
spiking rate in the same stereotyped manner, greatly extending the generality
of this relationship. We present an immediate consequence of this relationship
for population coding via tuning curves
M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation
We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC(50) value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC(50) of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC(50) (concentration that gives 50% activation) of 7 μM] shifts the equilibrium to the tetrameric active R-state, which has a similar activity to that of the constitutively fully active isoform M1PYK. Proliferation assays using HCT-116 cells showed that addition of inhibitors phenylalanine and T3 both increased cell proliferation, whereas addition of the activator F16BP reduced proliferation. F16BP abrogates the inhibitory effect of both phenylalanine and T3, highlighting a dominant role of M2PYK allosteric activation in the regulation of cancer proliferation. X-ray structures show constitutively fully active M1PYK and F16BP-bound M2PYK in an R-state conformation with a lysine at the dimer-interface acting as a peg in a hole, locking the active tetramer conformation. Binding of phenylalanine in an allosteric pocket induces a 13° rotation of the protomers, destroying the peg-in-hole R-state interface. This distinct T-state tetramer is stabilized by flipped out Trp/Arg side chains that stack across the dimer interface. X-ray structures and biophysical binding data of M2PYK complexes explain how, at a molecular level, fluctuations in concentrations of amino acids, thyroid hormone, and glucose metabolites switch M2PYK on and off to provide the cell with a nutrient sensing and growth signaling mechanism
- …
