160 research outputs found

    Edwin Anderson Alderman (1861-1931)

    Get PDF
    Edwin Anderson Alderman was a noted educator, progressive reformer, and president of the University of North Carolina, Tulane University, and the University of Virginia, where he served as the school\u27s first president from 1904 until his death in 1931. He brought to the University of Virginia a zeal for progressive reform, having campaigned in North Carolina and Louisiana for increased spending on public education and the creation of teacher-training schools, especially for women. In Charlottesville, Alderman established the Curry Memorial School of Education in 1905 and reorganized the university to emphasize efficiency and promote professional and technical instruction. The number of faculty doubled by 1907 and the university became more integrated with the educational life of the rest of the state. Alderman supported creating a coordinate college for women at the university, and even though the General Assembly opposed the idea, the university began admitting women to its graduate and professional programs in 1918. Alderman was a prolific fund-raiser, a well-known orator, and a close advisor to U.S. president Woodrow Wilson. In 1938, the Alderman Library at the University of Virginia was dedicated in Alderman\u27s honor

    Refinement of the Spitzer Space Telescope Pointing History Based on Image Registration Corrections from Multiple Data Channels

    Get PDF
    Position reconstruction for images acquired by the Infrared Array Camera (IRAC), one of the science instruments onboard the Spitzer Space Telescope, is a multistep procedure that is part of the routine processing done at the Spitzer Science Center (SSC). The IRAC instrument simultaneously images two different sky footprints, each with two independent infrared passbands (channels). The accuracy of the initial Spitzer pointing reconstruction is typically slightly better than 1". The well‐known technique of position matching imaged point sources to even more accurate star catalogs to refine the pointing further is implemented for SSC processing of IRAC data as well. Beyond that, the optimal processing of redundant pointing information from multiple instrument channels to yield an even better solution is also performed at the SSC. Our multichannel data processing approach is particularly beneficial when the star‐catalog matches are sparse in one channel but copious in others. A thorough review of the algorithm as implemented for the Spitzer mission reveals that the mathematical formalism can be fairly easily generalized for application to other astronomy missions. The computation of pointing uncertainties, the interpolation of pointing corrections and their uncertainties between measurements, and the estimation of random‐walk deviations from linearity are special areas of importance when implementing the method. After performing the operations described in this paper on the initial Spitzer pointing, the uncertainty in the observatory pointing history file is reduced 10–15 fold

    Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations

    Stellar populations in a standard ISOGAL field in the Galactic disk

    Full text link
    We aim to identify the stellar populations (mostly red giants and young stars) detected in the ISOGAL survey at 7 and 15micron towards a field (LN45) in the direction l=-45, b=0.0. The sources detected in the survey of the Galactic plane by the Infrared Space Observatory are characterized based on colour-colour and colour-magnitude diagrams. We combine the ISOGAL catalog with the data from surveys such as 2MASS and GLIMPSE. Interstellar extinction and distance are estimated using the red clump stars detected by 2MASS in combination with the isochrones for the AGB/RGB branch. Absolute magnitudes are thus derived and the stellar populations are identified based on their absolute magnitudes and their infrared excess. A standard approach to the analysis of ISOGAL disk observations has been established. We identify several hundred RGB/AGB stars and 22 candidate young stellar objects in the direction of this field in an area of 0.16 deg^2. An over-density of stellar sources is found at distances corresponding to the distance of the Scutum-Crux spiral arm. In addition, we determine mass-loss rates of AGB-stars using dust radiative transfer models from the literature.Comment: 48pages, 38 figures, accepted for publication in A &

    The AllWISE Motion Survey and the Quest for Cold Subdwarfs

    Get PDF
    The AllWISE processing pipeline has measured motions for all objects detected on Wide-field Infrared Survey Explorer (WISE) images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3525 have motions that can be independently confirmed from earlier Two Micron All Sky Survey (2MASS) images, yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a “subdwarf gap” at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list--WISEA J154045.67-510139.3--is a bright (J ≈ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman. While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products

    Initial Performance of the NEOWISE Reactivation Mission

    Get PDF
    NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft has been brought out of hibernation and has resumed surveying the sky at 3.4 and 4.6 μm. The scientific objectives of the NEOWISE reactivation mission are to detect, track, and characterize near-Earth asteroids and comets. The search for minor planets resumed on 2013 December 23, and the first new near-Earth object (NEO) was discovered 6 days later. As an infrared survey, NEOWISE detects asteroids based on their thermal emission and is equally sensitive to high and low albedo objects; consequently, NEOWISE-discovered NEOs tend to be large and dark. Over the course of its three-year mission, NEOWISE will determine radiometrically derived diameters and albedos for ~2000 NEOs and tens of thousands of Main Belt asteroids. The 32 months of hibernation have had no significant effect on the mission's performance. Image quality, sensitivity, photometric and astrometric accuracy, completeness, and the rate of minor planet detections are all essentially unchanged from the prime mission's post-cryogenic phase

    Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B

    Get PDF
    We report the discovery of a widely separated (258\farcs3\pm0\farcs4) T dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was initially identified from the Two Micron All Sky Survey (2MASS). Its near-infrared spectrum shows the 1.6 and 2.2 \micron CH4_4 absorption bands characteristic of T dwarfs, while its common proper motion with the Gl 570ABC system confirms companionship. Gl 570D (MJ_J = 16.47±\pm0.07) is nearly a full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and estimates of L = (2.8±\pm0.3)x106^{-6} L_{\sun} and Teff_{eff} = 750±\pm50 K make it significantly cooler and less luminous than any other known brown dwarf companion. Using evolutionary models by Burrows et al. and an adopted age of 2-10 Gyr, we derive a mass estimate of 50±\pm20 MJup_{Jup} for this object.Comment: 13 pages, 2 figures, 2 tables, accepted by ApJ
    corecore