25,127 research outputs found

    Mission design for a ballistic slow flyby Comet Encke 1980

    Get PDF
    Preliminary mission analyses for a proposed 1980 slow flyby (7-9 km/s) of comet Encke are presented. Among the topics covered are science objectives, Encke's physical activity and ephemeris accuracy, trajectory and launch-window analysis, terminal guidance, and spacecraft concepts. The nominal mission plan calls for a near-perihelion intercept with two spacecraft launched on a single launch vehicle. Both spacecraft will arrive at the same time, one passing within 500 km from Encke's nucleus on its sunward side, the other cutting through the tail region. By applying a small propulsive correction about three weeks after the encounter, it is possible to retarget both spacecraft for a second Encke intercept in 1984. The potential science return from the ballistic slow flyby is compared with other proposed mission modes for the 1980 Encke flyby mission, including the widely advocated slow flyby using solar-electric propulsion. It is shown that the ballistic slow flyby is superior in every respect

    Galvanic replacement of sub 20 nm Ag nanoparticles in organic media

    Get PDF
    Galvanic replacement is a versatile synthetic strategy for the synthesis of alloy and hollow nanostructures. The structural evolution of single crystalline and multiply twinned nanoparticles <20 nm in diameter and capped with oleylamine is systematically studied. Changes in chemical composition are dependent on the size and crystallinity of the parent nanoparticle. The effects of reaction temperature and rate of precursor addition are also investigated. Galvanic replacement of single crystal spherical and truncated cubic nanoparticles follows the same mechanism to form hollow octahedral nanoparticles, a mechanism which is not observed for galvanic replacement of Ag templates in aqueous systems. Multiply twinned nanoparticles can form nanorings or solid alloys by manipulating the reaction conditions. Oleylamine-capped Ag nanoparticles are highly adaptable templates to synthesize a range of hollow and alloy nanostructures with tuneable localised surface plasmon resonance

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Chemical abundances and winds of massive stars in M31: a B-type supergiant and a WC star in OB10

    Get PDF
    We present high quality spectroscopic data for two massive stars in the OB10 association of M31, OB10-64 (B0Ia) and OB10-WR1 (WC6). Medium resolution spectra of both stars were obtained using the ISIS spectrograph on the William Hershel Telescope. This is supplemented with HST-STIS UV spectroscopy and KeckI HIRES data for OB10-64. A non-LTE model atmosphere and abundance analysis for OB10-64 is presented indicating that this star has similar photospheric CNO, Mg and Si abundances as solar neighbourhood massive stars. A wind analysis of this early B-type supergiant reveals a mass-loss rate of M_dot=1.6x10^-6 M_solar/yr,and v_infty=1650 km/s. The corresponding wind momentum is in good agreement with the wind momentum -- luminosity relationship found for Galactic early B supergiants. Observations of OB10W-R1 are analysed using a non-LTE, line-blanketed code, to reveal approximate stellar parameters of log L/L_solar \~ 5.7, T~75 kK, v_infty ~ 3000 km/s, M_dot ~ 10^-4.3 M_solar/yr, adopting a clumped wind with a filling factor of 10%. Quantitative comparisons are made with the Galactic WC6 star HD92809 (WR23) revealing that OB10-WR1 is 0.4 dex more luminous, though it has a much lower C/He ratio (~0.1 versus 0.3 for HD92809). Our study represents the first detailed, chemical model atmosphere analysis for either a B-type supergiant or a WR star in Andromeda, and shows the potential of how such studies can provide new information on the chemical evolution of galaxies and the evolution of massive stars in the local Universe.Comment: 17 pages, 14 figures, MNRAS accepted version, some minor revision

    Confluent Orthogonal Drawings of Syntax Diagrams

    Full text link
    We provide a pipeline for generating syntax diagrams (also called railroad diagrams) from context free grammars. Syntax diagrams are a graphical representation of a context free language, which we formalize abstractly as a set of mutually recursive nondeterministic finite automata and draw by combining elements from the confluent drawing, layered drawing, and smooth orthogonal drawing styles. Within our pipeline we introduce several heuristics that modify the grammar but preserve the language, improving the aesthetics of the final drawing.Comment: GD 201

    Imaging faint brown dwarf companions close to bright stars with a small, well-corrected telescope aperture

    Get PDF
    We have used our 1.6 m diameter off-axis well-corrected sub-aperture (WCS) on the Palomar Hale telescope in concert with a small inner-working-angle (IWA) phase-mask coronagraph to image the immediate environs of a small number of nearby stars. Test cases included three stars (HD 130948, HD 49197 and HR7672) with known brown dwarf companions at small separations, all of which were detected. We also present the initial detection of a new object close to the nearby young G0V star HD171488. Follow up observations are needed to determine if this object is a bona fide companion, but its flux is consistent with the flux of a young brown dwarf or low mass M star at the same distance as the primary. Interestingly, at small angles our WCS coronagraph demonstrates a limiting detectable contrast comparable to that of extant Lyot coronagraphs on much larger telescopes corrected with current-generation AO systems. This suggests that small apertures corrected to extreme adaptive optics (ExAO) levels can be used to carry out initial surveys for close brown dwarf and stellar companions, leaving followup observations for larger telescopes.Comment: accepted for publication in the Astrophysical Journa
    corecore